Lösung 2.2:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:6a moved to Solution 2.2:6a: Robot: moved page)
Zeile 1: Zeile 1:
 +
According to the definition, the point of intersection between two lines is that point which lies on both lines; it must therefore satisfy the equations of both lines.
 +
 +
If the point of intersection has coordinates
 +
<math>\left( x \right.,\left. y \right)</math>, then
 +
 +
<math>y=3x+5</math>
 +
 +
and
 +
 +
<math>y=0</math>
 +
(
 +
<math>x</math>
 +
-axis)
 +
 +
If we substitute
 +
<math>y=0</math>
 +
into the first equation, we obtain
 +
 +
 +
<math>0=3x+5</math>
 +
i.e.
 +
<math>x=-\frac{5}{3}</math>
 +
 +
 +
The point of intersection is
 +
<math>\left( -\frac{5}{3} \right.,\left. 0 \right)</math>.
 +
 +
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Image:2_2_6a.gif]] </center>
+
 
[[Image:2_2_6_a.gif|center]]
[[Image:2_2_6_a.gif|center]]
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 10:16, 18. Sep. 2008

According to the definition, the point of intersection between two lines is that point which lies on both lines; it must therefore satisfy the equations of both lines.

If the point of intersection has coordinates \displaystyle \left( x \right.,\left. y \right), then

\displaystyle y=3x+5

and

\displaystyle y=0 ( \displaystyle x -axis)

If we substitute \displaystyle y=0 into the first equation, we obtain


\displaystyle 0=3x+5 i.e. \displaystyle x=-\frac{5}{3}


The point of intersection is \displaystyle \left( -\frac{5}{3} \right.,\left. 0 \right).