Lösung 2.2:3c
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.2:3c moved to Solution 2.2:3c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | (The exercise is taken from an actual exam from Spring Term 1944!) |
- | + | ||
- | {{ | + | Start by rewriting the terms on the left-hand side as one term having a common denominator: |
- | {{ | + | |
- | < | + | |
- | {{ | + | <math>\begin{align} |
- | {{ | + | & \frac{1}{x-1}-\frac{1}{x+1}=\frac{1}{x-1}\centerdot \frac{x+1}{x+1}-\frac{1}{x+1}\centerdot \frac{x-1}{x-1} \\ |
- | < | + | & =\frac{x+1}{\left( x-1 \right)\left( x+1 \right)}-\frac{x-1}{\left( x-1 \right)\left( x+1 \right)}=\frac{\left( x+1 \right)-\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}=\frac{2}{\left( x-1 \right)\left( x+1 \right)} \\ |
- | {{ | + | \end{align}</math> |
+ | |||
+ | |||
+ | If we also write | ||
+ | <math>3x-3=3\left( x-1 \right)</math>, the equation can be rewritten as | ||
+ | |||
+ | |||
+ | <math>\frac{2}{\left( x-1 \right)\left( x+1 \right)}\left( x^{2}+\frac{1}{2} \right)=\frac{6x-1}{3\left( x-1 \right)}</math> | ||
+ | |||
+ | |||
+ | Because | ||
+ | <math>x=1</math> | ||
+ | cannot be a solution to the equation, the factor | ||
+ | <math>x-1</math> | ||
+ | can be removed from the denominator of both sides (i.e. actually, we multiply both sides by | ||
+ | <math>x-1</math> | ||
+ | and then eliminate it). | ||
+ | |||
+ | |||
+ | <math>\frac{2}{x+1}\left( x^{2}+\frac{1}{2} \right)=\frac{6x-1}{3}</math> | ||
+ | |||
+ | |||
+ | Then, both sides are multiplied by | ||
+ | <math>3</math> | ||
+ | and | ||
+ | <math>x+1</math>, so that we get an equation without any denominators. | ||
+ | |||
+ | |||
+ | <math>6\left( x^{2}+\frac{1}{2} \right)=\left( 6x-1 \right)\left( x+1 \right)</math> | ||
+ | |||
+ | |||
+ | Expanding both sides | ||
+ | |||
+ | |||
+ | <math>6x^{2}+3=6x^{2}+5x-1</math> | ||
+ | |||
+ | |||
+ | the x2 terms cancel each other out and we obtain a first-order equation, | ||
+ | |||
+ | |||
+ | <math>3=5x-1</math> | ||
+ | |||
+ | |||
+ | which has the solution | ||
+ | |||
+ | |||
+ | <math>x=\frac{4}{5}</math> | ||
+ | |||
+ | |||
+ | We check whether we have calculated correctly by substituting x=4/5 into the original equation: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \text{LHS}=\left( \frac{1}{\frac{4}{5}-1}-\frac{1}{\frac{4}{5}+1} \right)\left( \left( \frac{4}{5} \right)^{2}+\frac{1}{2} \right)=\left( \frac{1}{-\frac{1}{5}}-\frac{1}{\frac{9}{5}} \right)\left( \frac{16}{25}+\frac{1}{2} \right) \\ | ||
+ | & \\ | ||
+ | & =\left( -5-\frac{5}{9} \right)\frac{16\centerdot 2+25}{2\centerdot 25}=-\frac{50}{9}\centerdot \frac{57}{50}=-\frac{57}{9}=-\frac{19}{3}, \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\text{RHS}=\frac{6\centerdot \frac{4}{5}-1}{3\centerdot \frac{4}{5}-3}=\frac{\frac{24}{5}-\frac{5}{5}}{\frac{12}{5}-\frac{15}{5}}=\frac{\frac{1}{5}\centerdot \left( 24-5 \right)}{\frac{1}{5}\centerdot \left( 12-15 \right)}=\frac{19}{-3}=-\frac{19}{3}</math> |
Version vom 15:12, 17. Sep. 2008
(The exercise is taken from an actual exam from Spring Term 1944!)
Start by rewriting the terms on the left-hand side as one term having a common denominator:
\displaystyle \begin{align}
& \frac{1}{x-1}-\frac{1}{x+1}=\frac{1}{x-1}\centerdot \frac{x+1}{x+1}-\frac{1}{x+1}\centerdot \frac{x-1}{x-1} \\
& =\frac{x+1}{\left( x-1 \right)\left( x+1 \right)}-\frac{x-1}{\left( x-1 \right)\left( x+1 \right)}=\frac{\left( x+1 \right)-\left( x-1 \right)}{\left( x-1 \right)\left( x+1 \right)}=\frac{2}{\left( x-1 \right)\left( x+1 \right)} \\
\end{align}
If we also write
\displaystyle 3x-3=3\left( x-1 \right), the equation can be rewritten as
\displaystyle \frac{2}{\left( x-1 \right)\left( x+1 \right)}\left( x^{2}+\frac{1}{2} \right)=\frac{6x-1}{3\left( x-1 \right)}
Because
\displaystyle x=1
cannot be a solution to the equation, the factor
\displaystyle x-1
can be removed from the denominator of both sides (i.e. actually, we multiply both sides by
\displaystyle x-1
and then eliminate it).
\displaystyle \frac{2}{x+1}\left( x^{2}+\frac{1}{2} \right)=\frac{6x-1}{3}
Then, both sides are multiplied by
\displaystyle 3
and
\displaystyle x+1, so that we get an equation without any denominators.
\displaystyle 6\left( x^{2}+\frac{1}{2} \right)=\left( 6x-1 \right)\left( x+1 \right)
Expanding both sides
\displaystyle 6x^{2}+3=6x^{2}+5x-1
the x2 terms cancel each other out and we obtain a first-order equation,
\displaystyle 3=5x-1
which has the solution
\displaystyle x=\frac{4}{5}
We check whether we have calculated correctly by substituting x=4/5 into the original equation:
\displaystyle \begin{align}
& \text{LHS}=\left( \frac{1}{\frac{4}{5}-1}-\frac{1}{\frac{4}{5}+1} \right)\left( \left( \frac{4}{5} \right)^{2}+\frac{1}{2} \right)=\left( \frac{1}{-\frac{1}{5}}-\frac{1}{\frac{9}{5}} \right)\left( \frac{16}{25}+\frac{1}{2} \right) \\
& \\
& =\left( -5-\frac{5}{9} \right)\frac{16\centerdot 2+25}{2\centerdot 25}=-\frac{50}{9}\centerdot \frac{57}{50}=-\frac{57}{9}=-\frac{19}{3}, \\
\end{align}
\displaystyle \text{RHS}=\frac{6\centerdot \frac{4}{5}-1}{3\centerdot \frac{4}{5}-3}=\frac{\frac{24}{5}-\frac{5}{5}}{\frac{12}{5}-\frac{15}{5}}=\frac{\frac{1}{5}\centerdot \left( 24-5 \right)}{\frac{1}{5}\centerdot \left( 12-15 \right)}=\frac{19}{-3}=-\frac{19}{3}