Lösung 2.2:2b
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.2:2b moved to Solution 2.2:2b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we multiply both sides in the equation by |
- | < | + | <math>4\centerdot 7=28</math>, so that we get rid of the denominators in the equation, |
- | {{ | + | |
- | {{ | + | |
- | < | + | <math>\begin{align} |
- | {{ | + | & 4\centerdot 7\centerdot \frac{8x+3}{7}-4\centerdot 7\centerdot \frac{5x-7}{4}=4\centerdot 7\centerdot 2 \\ |
+ | & \Leftrightarrow 4\centerdot \left( 8x+3 \right)-7\centerdot \left( 5x-7 \right)=56 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | We can simplify the left-hand side to , | ||
+ | |||
+ | |||
+ | <math>4\centerdot \left( 8x+3 \right)-7\centerdot \left( 5x-7 \right)=32x+12-35x+49=-3x+61</math> | ||
+ | |||
+ | |||
+ | Hence, the equation is | ||
+ | |||
+ | |||
+ | <math>-3x+61=56</math> | ||
+ | |||
+ | |||
+ | We solve this equation by subtracting | ||
+ | <math>61</math> | ||
+ | from both sides and then dividing by | ||
+ | <math>-3</math>, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & -3x+61-61=56-61 \\ | ||
+ | & -3x=-5 \\ | ||
+ | & \frac{-3x}{-3}=\frac{-5}{-3} \\ | ||
+ | & x=\frac{5}{3} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The answer is | ||
+ | <math>x={5}/{3}\;</math>. | ||
+ | |||
+ | As the final part of the solution, check the answer by substituting | ||
+ | <math>x={5}/{3}\;</math> | ||
+ | into the original equation | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \text{LHS}\quad =\quad \frac{8\centerdot \frac{5}{3}+3}{7}-\frac{5\centerdot \frac{5}{3}-7}{4}=\frac{\left( 8\centerdot \frac{5}{3}+3 \right)\centerdot 3}{7\centerdot 3}-\frac{\left( 5\centerdot \frac{5}{3}-7 \right)\centerdot 3}{4\centerdot 3} \\ | ||
+ | & \\ | ||
+ | & =\frac{8\centerdot 5+3\centerdot 3}{7\centerdot 3}-\frac{5\centerdot 5-7\centerdot 3}{4\centerdot 3}=\frac{40+9}{21}-\frac{25-21}{12} \\ | ||
+ | & \\ | ||
+ | & =\frac{49}{21}-\frac{4}{12}=\frac{7\centerdot 7}{3\centerdot 7}-\frac{2\centerdot 2}{2\centerdot 2\centerdot 2}=\frac{7}{3}-\frac{1}{3}=\frac{7-1}{3} \\ | ||
+ | & \\ | ||
+ | & =\frac{6}{3}=2\quad =\quad \text{RHS} \\ | ||
+ | \end{align}</math> |
Version vom 12:45, 17. Sep. 2008
First, we multiply both sides in the equation by \displaystyle 4\centerdot 7=28, so that we get rid of the denominators in the equation,
\displaystyle \begin{align}
& 4\centerdot 7\centerdot \frac{8x+3}{7}-4\centerdot 7\centerdot \frac{5x-7}{4}=4\centerdot 7\centerdot 2 \\
& \Leftrightarrow 4\centerdot \left( 8x+3 \right)-7\centerdot \left( 5x-7 \right)=56 \\
\end{align}
We can simplify the left-hand side to ,
\displaystyle 4\centerdot \left( 8x+3 \right)-7\centerdot \left( 5x-7 \right)=32x+12-35x+49=-3x+61
Hence, the equation is
\displaystyle -3x+61=56
We solve this equation by subtracting
\displaystyle 61
from both sides and then dividing by
\displaystyle -3,
\displaystyle \begin{align}
& -3x+61-61=56-61 \\
& -3x=-5 \\
& \frac{-3x}{-3}=\frac{-5}{-3} \\
& x=\frac{5}{3} \\
\end{align}
The answer is
\displaystyle x={5}/{3}\;.
As the final part of the solution, check the answer by substituting \displaystyle x={5}/{3}\; into the original equation
\displaystyle \begin{align}
& \text{LHS}\quad =\quad \frac{8\centerdot \frac{5}{3}+3}{7}-\frac{5\centerdot \frac{5}{3}-7}{4}=\frac{\left( 8\centerdot \frac{5}{3}+3 \right)\centerdot 3}{7\centerdot 3}-\frac{\left( 5\centerdot \frac{5}{3}-7 \right)\centerdot 3}{4\centerdot 3} \\
& \\
& =\frac{8\centerdot 5+3\centerdot 3}{7\centerdot 3}-\frac{5\centerdot 5-7\centerdot 3}{4\centerdot 3}=\frac{40+9}{21}-\frac{25-21}{12} \\
& \\
& =\frac{49}{21}-\frac{4}{12}=\frac{7\centerdot 7}{3\centerdot 7}-\frac{2\centerdot 2}{2\centerdot 2\centerdot 2}=\frac{7}{3}-\frac{1}{3}=\frac{7-1}{3} \\
& \\
& =\frac{6}{3}=2\quad =\quad \text{RHS} \\
\end{align}