Lösung 2.2:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.2:1d moved to Solution 2.2:1d: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | Move |
| - | < | + | <math>x</math> |
| - | {{ | + | to the left-hand side by subtracting |
| + | <math>2x</math> | ||
| + | from both sides, | ||
| + | |||
| + | |||
| + | <math>5x+7-2x=2x-6-2x</math> | ||
| + | |||
| + | |||
| + | which gives | ||
| + | |||
| + | |||
| + | <math>3x+7=-6</math> | ||
| + | |||
| + | |||
| + | Subtract | ||
| + | <math>7</math> | ||
| + | from both sides, | ||
| + | |||
| + | |||
| + | <math>3x+7-7=-6-7</math> | ||
| + | |||
| + | |||
| + | so that the term | ||
| + | <math>3x</math> | ||
| + | alone remains on the left-hand side | ||
| + | |||
| + | |||
| + | <math>3x=-13</math> | ||
| + | |||
| + | |||
| + | Then, divide both sides by | ||
| + | <math>3</math> | ||
| + | |||
| + | |||
| + | |||
| + | <math>\frac{3x}{3}=-\frac{13}{3}</math> | ||
| + | |||
| + | |||
| + | to get x: | ||
| + | |||
| + | |||
| + | <math>x=-\frac{13}{3}</math> | ||
Version vom 14:28, 16. Sep. 2008
Move \displaystyle x to the left-hand side by subtracting \displaystyle 2x from both sides,
\displaystyle 5x+7-2x=2x-6-2x
which gives
\displaystyle 3x+7=-6
Subtract
\displaystyle 7
from both sides,
\displaystyle 3x+7-7=-6-7
so that the term
\displaystyle 3x
alone remains on the left-hand side
\displaystyle 3x=-13
Then, divide both sides by
\displaystyle 3
\displaystyle \frac{3x}{3}=-\frac{13}{3}
to get x:
\displaystyle x=-\frac{13}{3}
