Lösung 2.2:1c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:1c moved to Solution 2.2:1c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Because there is an
-
<center> [[Image:2_2_1c.gif]] </center>
+
<math>x</math>
-
{{NAVCONTENT_STOP}}
+
on both the left- and right-hand sides,
 +
 
 +
the first step is to subtract
 +
<math>{x}/{3}\;</math>
 +
from both sides,
 +
 
 +
 
 +
<math>\frac{1}{3}x-1-\frac{1}{3}x=x-\frac{1}{3}x</math>
 +
 
 +
 
 +
so as to collect
 +
<math>x</math>
 +
on the right-hand side
 +
 
 +
 
 +
<math>-1=\frac{2}{3}x.</math>
 +
 
 +
 
 +
Then, multiply both sides by
 +
<math>{3}/{2}\;</math>,
 +
 
 +
 
 +
<math>\frac{3}{2}\centerdot \left( -1 \right)=\frac{3}{2}\centerdot \frac{2}{3}x</math>
 +
 
 +
 
 +
so that
 +
<math>{2}/{3}\;</math>
 +
can be eliminated on the right-hand side to give us
 +
 
 +
 
 +
<math>-\frac{3}{2}=x</math>

Version vom 14:21, 16. Sep. 2008

Because there is an \displaystyle x on both the left- and right-hand sides,

the first step is to subtract \displaystyle {x}/{3}\; from both sides,


\displaystyle \frac{1}{3}x-1-\frac{1}{3}x=x-\frac{1}{3}x


so as to collect \displaystyle x on the right-hand side


\displaystyle -1=\frac{2}{3}x.


Then, multiply both sides by \displaystyle {3}/{2}\;,


\displaystyle \frac{3}{2}\centerdot \left( -1 \right)=\frac{3}{2}\centerdot \frac{2}{3}x


so that \displaystyle {2}/{3}\; can be eliminated on the right-hand side to give us


\displaystyle -\frac{3}{2}=x