Lösung 2.1:7b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.1:7b moved to Solution 2.1:7b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | { | + | The denominators |
| - | < | + | <math>x-1</math> |
| - | {{ | + | and |
| + | <math>x^{2}</math> | ||
| + | do not have a common denominator, so the lowest common denominator is | ||
| + | <math>x^{2}\left( x-1 \right)</math>. We treat all three terms so that they have a common denominator and then start simplifying: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & x+\frac{1}{x-1}+\frac{1}{x^{2}}=x\centerdot \frac{x^{2}\left( x-1 \right)}{x^{2}\left( x-1 \right)}+\frac{1}{x-1}\centerdot \frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}\centerdot \frac{x-1}{x-1} \\ | ||
| + | & =\frac{x^{3}\left( x-1 \right)+x^{2}+\left( x-1 \right)}{x^{2}\left( x-1 \right)}=\frac{x^{4}-x^{3}+x^{2}+x-1}{x^{2}\left( x-1 \right)} \\ | ||
| + | \end{align}</math> | ||
Version vom 12:46, 16. Sep. 2008
The denominators \displaystyle x-1 and \displaystyle x^{2} do not have a common denominator, so the lowest common denominator is \displaystyle x^{2}\left( x-1 \right). We treat all three terms so that they have a common denominator and then start simplifying:
\displaystyle \begin{align}
& x+\frac{1}{x-1}+\frac{1}{x^{2}}=x\centerdot \frac{x^{2}\left( x-1 \right)}{x^{2}\left( x-1 \right)}+\frac{1}{x-1}\centerdot \frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}\centerdot \frac{x-1}{x-1} \\
& =\frac{x^{3}\left( x-1 \right)+x^{2}+\left( x-1 \right)}{x^{2}\left( x-1 \right)}=\frac{x^{4}-x^{3}+x^{2}+x-1}{x^{2}\left( x-1 \right)} \\
\end{align}
