Lösung 2.1:7a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Lösning 2.1:7a moved to Solution 2.1:7a: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | + | If we multiply the top and bottom of the first fraction by | |
| - | < | + | <math>x+5</math> | 
| - | {{ | + | and the second by | 
| + | <math>x+3</math>, then they will both have the same numerator and we can work out the expression by subtracting the numerators: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{2}{x+3}-\frac{2}{x+5}=\frac{2}{x+3}\centerdot \frac{x+5}{x+5}-\frac{2}{x+5}\centerdot \frac{x+3}{x+3} \\  | ||
| + | & =\frac{2\left( x+5 \right)-2\left( x+3 \right)}{\left( x+3 \right)\left( x+5 \right)}=\frac{2x+10-2x-6}{\left( x+3 \right)\left( x+5 \right)}=\frac{4}{\left( x+3 \right)\left( x+5 \right)} \\  | ||
| + | \end{align}</math> | ||
Version vom 12:38, 16. Sep. 2008
If we multiply the top and bottom of the first fraction by \displaystyle x+5 and the second by \displaystyle x+3, then they will both have the same numerator and we can work out the expression by subtracting the numerators:
\displaystyle \begin{align}
& \frac{2}{x+3}-\frac{2}{x+5}=\frac{2}{x+3}\centerdot \frac{x+5}{x+5}-\frac{2}{x+5}\centerdot \frac{x+3}{x+3} \\ 
& =\frac{2\left( x+5 \right)-2\left( x+3 \right)}{\left( x+3 \right)\left( x+5 \right)}=\frac{2x+10-2x-6}{\left( x+3 \right)\left( x+5 \right)}=\frac{4}{\left( x+3 \right)\left( x+5 \right)} \\ 
\end{align}
 
		  