Lösung 2.1:7a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:7a moved to Solution 2.1:7a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we multiply the top and bottom of the first fraction by
-
<center> [[Image:2_1_7a.gif]] </center>
+
<math>x+5</math>
-
{{NAVCONTENT_STOP}}
+
and the second by
 +
<math>x+3</math>, then they will both have the same numerator and we can work out the expression by subtracting the numerators:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{2}{x+3}-\frac{2}{x+5}=\frac{2}{x+3}\centerdot \frac{x+5}{x+5}-\frac{2}{x+5}\centerdot \frac{x+3}{x+3} \\
 +
& =\frac{2\left( x+5 \right)-2\left( x+3 \right)}{\left( x+3 \right)\left( x+5 \right)}=\frac{2x+10-2x-6}{\left( x+3 \right)\left( x+5 \right)}=\frac{4}{\left( x+3 \right)\left( x+5 \right)} \\
 +
\end{align}</math>

Version vom 12:38, 16. Sep. 2008

If we multiply the top and bottom of the first fraction by \displaystyle x+5 and the second by \displaystyle x+3, then they will both have the same numerator and we can work out the expression by subtracting the numerators:


\displaystyle \begin{align} & \frac{2}{x+3}-\frac{2}{x+5}=\frac{2}{x+3}\centerdot \frac{x+5}{x+5}-\frac{2}{x+5}\centerdot \frac{x+3}{x+3} \\ & =\frac{2\left( x+5 \right)-2\left( x+3 \right)}{\left( x+3 \right)\left( x+5 \right)}=\frac{2x+10-2x-6}{\left( x+3 \right)\left( x+5 \right)}=\frac{4}{\left( x+3 \right)\left( x+5 \right)} \\ \end{align}