Lösung 2.1:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.1:4c moved to Solution 2.1:4c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Instead of multiplying together the whole expression, and then reading off the coefficients, we investigate which terms from the three brackets together give terms in
-
<center> [[Image:2_1_4c.gif]] </center>
+
<math>x^{1}</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>x^{2}</math>.
 +
 
 +
If we start with the term in
 +
<math>x</math>, we see that there is only one combination of a term from each bracket
 +
which, when multiplied, gives
 +
<math>x^{1}</math>,
 +
 
 +
 
 +
<math>\left( x-x^{3}+x^{5} \right)\left( 1+3x+5x^{2} \right)\left( 2-7x^{2}-x^{4} \right)=...+x\centerdot 1\centerdot 2+...</math>
 +
 
 +
so, the coefficient in front of
 +
<math>x</math>
 +
is
 +
<math>1\centerdot 2=2</math>.
 +
 
 +
As for
 +
<math>x^{2}</math>, we also have only one possible combination:
 +
 
 +
 
 +
<math>\left( x-x^{3}+x^{5} \right)\left( 1+3x+5x^{2} \right)\left( 2-7x^{2}-x^{4} \right)=...+x\centerdot 3x\centerdot 2+...</math>
 +
 
 +
 
 +
The coefficient in front of
 +
<math>x^{2}</math>
 +
is
 +
<math>3\centerdot 2=6</math>

Version vom 14:36, 15. Sep. 2008

Instead of multiplying together the whole expression, and then reading off the coefficients, we investigate which terms from the three brackets together give terms in \displaystyle x^{1} and \displaystyle x^{2}.

If we start with the term in \displaystyle x, we see that there is only one combination of a term from each bracket which, when multiplied, gives \displaystyle x^{1},


\displaystyle \left( x-x^{3}+x^{5} \right)\left( 1+3x+5x^{2} \right)\left( 2-7x^{2}-x^{4} \right)=...+x\centerdot 1\centerdot 2+...

so, the coefficient in front of \displaystyle x is \displaystyle 1\centerdot 2=2.

As for \displaystyle x^{2}, we also have only one possible combination:


\displaystyle \left( x-x^{3}+x^{5} \right)\left( 1+3x+5x^{2} \right)\left( 2-7x^{2}-x^{4} \right)=...+x\centerdot 3x\centerdot 2+...


The coefficient in front of \displaystyle x^{2} is \displaystyle 3\centerdot 2=6