Lösung 2.1:4a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Lösning 2.1:4a moved to Solution 2.1:4a: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | First, we multiply the second bracket by  | 
| - | < | + | <math>x</math> | 
| - | {{ | + | from the first bracket, | 
| + | |||
| + | |||
| + | <math>\left( x+2 \right)\left( 3x^{2}-x+5 \right)=x\centerdot 3x^{2}-x\centerdot x+x\centerdot 5+...</math> | ||
| + | |||
| + | |||
| + | Then, do the same for  | ||
| + | <math>2</math> | ||
| + | from the first bracket: | ||
| + | |||
| + | |||
| + | <math>\left( x+2 \right)\left( 3x^{2}-x+5 \right)=3x^{3}-x^{2}+5x+2\centerdot 3x^{2}-2\centerdot x+2\centerdot 5</math> | ||
| + | |||
| + | |||
| + | Now, collect together  | ||
| + | <math>x^{3}</math>-,  | ||
| + | <math>x^{2}</math>-, | ||
| + | <math>x</math>- and the constant terms: | ||
| + | |||
| + | |||
| + | <math>3x^{3}+\left( -1+6 \right)x^{2}+\left( 5-2 \right)x+10=3x^{3}+5x^{2}+3x+10</math> | ||
| + | |||
| + | |||
| + | The coefficient in front of   | ||
| + | <math>x^{2}</math> | ||
| + | is  | ||
| + | <math>5</math> | ||
| + | and the coefficient in front of x is  | ||
| + | <math>3</math>. | ||
Version vom 13:42, 15. Sep. 2008
First, we multiply the second bracket by \displaystyle x from the first bracket,
\displaystyle \left( x+2 \right)\left( 3x^{2}-x+5 \right)=x\centerdot 3x^{2}-x\centerdot x+x\centerdot 5+...
Then, do the same for 
\displaystyle 2
from the first bracket:
\displaystyle \left( x+2 \right)\left( 3x^{2}-x+5 \right)=3x^{3}-x^{2}+5x+2\centerdot 3x^{2}-2\centerdot x+2\centerdot 5
Now, collect together 
\displaystyle x^{3}-, 
\displaystyle x^{2}-,
\displaystyle x- and the constant terms:
\displaystyle 3x^{3}+\left( -1+6 \right)x^{2}+\left( 5-2 \right)x+10=3x^{3}+5x^{2}+3x+10
The coefficient in front of  
\displaystyle x^{2}
is 
\displaystyle 5
and the coefficient in front of x is 
\displaystyle 3.
 
		  