Lösung 2.1:3e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.1:3e moved to Solution 2.1:3e: Robot: moved page) |
K |
||
Zeile 1: | Zeile 1: | ||
- | + | Both terms contain ''x'', which can therefore be taken out as a factor (as can 2), | |
- | + | ||
- | Both terms contain | + | |
- | + | {{Displayed math||<math>18x-2x^3=2x\cdot 9-2x \cdot x^2=2x(9-x^2)\,\textrm{.}</math>}} | |
The remaining second-degree factor <math> 9-x^2 </math> can then be factorized using the conjugate rule | The remaining second-degree factor <math> 9-x^2 </math> can then be factorized using the conjugate rule | ||
- | + | {{Displayed math||<math> 2x(9-x^2)=2x(3^2-x^2)=2x(3+x)(3-x)\,,</math>}} | |
- | which can also be written as <math> -2x(x+3)(x-3).</math> | + | which can also be written as <math>-2x(x+3)(x-3).</math> |
- | + |
Version vom 08:37, 23. Sep. 2008
Both terms contain x, which can therefore be taken out as a factor (as can 2),
The remaining second-degree factor \displaystyle 9-x^2 can then be factorized using the conjugate rule
which can also be written as \displaystyle -2x(x+3)(x-3).