Lösung 2.1:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.1:1c moved to Solution 2.1:1c: Robot: moved page) |
K |
||
Zeile 1: | Zeile 1: | ||
- | + | The factor <math> -x^2 </math> can be written as <math>(-1)x^2</math> and both factors can be multiplied into the bracket | |
- | + | ||
- | The factor <math> -x^2 </math> can be written as <math>(-1)x^2 </math> and both factors can be multiplied into the bracket | + | |
- | <math> | + | {{Displayed math||<math>\begin{align} |
- | + | -x^2 (4-y^2) &= (-1)x^2(4-y^2)\\[3pt] | |
- | \begin{align} | + | &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2\\[3pt] |
- | -x^2 (4-y^2) &= (-1)x^2(4-y^2) \\ | + | &= -4x^2 +x^2 y^2\,\textrm{.} |
- | &= (-1)x^2 \cdot 4 - (-1)x^2 \cdot y^2 \\ | + | \end{align}</math>}} |
- | &= -4x^2 +x^2 y^2. | + | |
- | \end{align} | + | |
- | </math> | + | |
- | + | ||
- | + | ||
- | + |
Version vom 07:43, 23. Sep. 2008
The factor \displaystyle -x^2 can be written as \displaystyle (-1)x^2 and both factors can be multiplied into the bracket