Lösung 1.3:6f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:6f moved to Solution 1.3:6f: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We can factorize the exponents
-
<center> [[Image:1_3_6f.gif]] </center>
+
<math>40</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>56</math>
 +
as
 +
 
 +
 
 +
<math>\begin{align}
 +
& 40=4\centerdot 10=2\centerdot 2\centerdot 2\centerdot 5=2^{3}\centerdot 5 \\
 +
& \\
 +
& 56=7\centerdot 8=7\centerdot 2\centerdot 4=7\centerdot 2\centerdot 2\centerdot 2=2^{3}\centerdot 7 \\
 +
\end{align}</math>
 +
 
 +
 
 +
and we then see that they have
 +
<math>2^{3}=8</math>
 +
as a common factor. We can take this factor out as an "outer" exponent:
 +
 
 +
 
 +
<math>\begin{align}
 +
& 3^{40}=3^{5\centerdot 8}=\left( 3^{5} \right)^{8}=\left( 3\centerdot 3\centerdot 3\centerdot 3\centerdot 3 \right)^{8}=243^{8} \\
 +
& \\
 +
& 2^{56}=2^{7\centerdot 8}=\left( 2^{7} \right)^{8}=\left( 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2 \right)^{8}=128^{8} \\
 +
\end{align}</math>
 +
 
 +
 
 +
This shows that
 +
<math>3^{40}=243^{8}</math>
 +
is bigger than
 +
<math>2^{56}=128^{8}</math>

Version vom 13:01, 15. Sep. 2008

We can factorize the exponents \displaystyle 40 and \displaystyle 56 as


\displaystyle \begin{align} & 40=4\centerdot 10=2\centerdot 2\centerdot 2\centerdot 5=2^{3}\centerdot 5 \\ & \\ & 56=7\centerdot 8=7\centerdot 2\centerdot 4=7\centerdot 2\centerdot 2\centerdot 2=2^{3}\centerdot 7 \\ \end{align}


and we then see that they have \displaystyle 2^{3}=8 as a common factor. We can take this factor out as an "outer" exponent:


\displaystyle \begin{align} & 3^{40}=3^{5\centerdot 8}=\left( 3^{5} \right)^{8}=\left( 3\centerdot 3\centerdot 3\centerdot 3\centerdot 3 \right)^{8}=243^{8} \\ & \\ & 2^{56}=2^{7\centerdot 8}=\left( 2^{7} \right)^{8}=\left( 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2 \right)^{8}=128^{8} \\ \end{align}


This shows that \displaystyle 3^{40}=243^{8} is bigger than \displaystyle 2^{56}=128^{8}