Lösung 1.3:6f
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.3:6f moved to Solution 1.3:6f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We can factorize the exponents |
- | < | + | <math>40</math> |
- | {{ | + | and |
+ | <math>56</math> | ||
+ | as | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 40=4\centerdot 10=2\centerdot 2\centerdot 2\centerdot 5=2^{3}\centerdot 5 \\ | ||
+ | & \\ | ||
+ | & 56=7\centerdot 8=7\centerdot 2\centerdot 4=7\centerdot 2\centerdot 2\centerdot 2=2^{3}\centerdot 7 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and we then see that they have | ||
+ | <math>2^{3}=8</math> | ||
+ | as a common factor. We can take this factor out as an "outer" exponent: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 3^{40}=3^{5\centerdot 8}=\left( 3^{5} \right)^{8}=\left( 3\centerdot 3\centerdot 3\centerdot 3\centerdot 3 \right)^{8}=243^{8} \\ | ||
+ | & \\ | ||
+ | & 2^{56}=2^{7\centerdot 8}=\left( 2^{7} \right)^{8}=\left( 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2 \right)^{8}=128^{8} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | This shows that | ||
+ | <math>3^{40}=243^{8}</math> | ||
+ | is bigger than | ||
+ | <math>2^{56}=128^{8}</math> |
Version vom 13:01, 15. Sep. 2008
We can factorize the exponents \displaystyle 40 and \displaystyle 56 as
\displaystyle \begin{align}
& 40=4\centerdot 10=2\centerdot 2\centerdot 2\centerdot 5=2^{3}\centerdot 5 \\
& \\
& 56=7\centerdot 8=7\centerdot 2\centerdot 4=7\centerdot 2\centerdot 2\centerdot 2=2^{3}\centerdot 7 \\
\end{align}
and we then see that they have
\displaystyle 2^{3}=8
as a common factor. We can take this factor out as an "outer" exponent:
\displaystyle \begin{align}
& 3^{40}=3^{5\centerdot 8}=\left( 3^{5} \right)^{8}=\left( 3\centerdot 3\centerdot 3\centerdot 3\centerdot 3 \right)^{8}=243^{8} \\
& \\
& 2^{56}=2^{7\centerdot 8}=\left( 2^{7} \right)^{8}=\left( 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2 \right)^{8}=128^{8} \\
\end{align}
This shows that
\displaystyle 3^{40}=243^{8}
is bigger than
\displaystyle 2^{56}=128^{8}