Lösung 1.3:6e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:6e moved to Solution 1.3:6e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Both
-
<center> [[Image:1_3_6e.gif]] </center>
+
<math>125</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>625</math>
 +
can be written as powers of
 +
<math>5</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& 125=5\centerdot 5=5\centerdot 5\centerdot 5=5^{3} \\
 +
& \\
 +
& 625=5\centerdot 125=5\centerdot 5^{3}=5^{4} \\
 +
& \\
 +
\end{align}</math>
 +
 
 +
and this means that
 +
 
 +
 
 +
<math>\begin{align}
 +
& 125^{\frac{1}{2}}=\left( 5^{3} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{1}{2}}=5^{\frac{3}{2}} \\
 +
& \\
 +
& 625=\left( 5^{4} \right)^{\frac{1}{3}}=5^{4\centerdot \frac{1}{3}}=5^{\frac{4}{3}} \\
 +
\end{align}</math>
 +
 
 +
 
 +
From this, we see that
 +
<math>125^{\frac{1}{2}}>625^{\frac{1}{3}}</math>, since the exponent
 +
<math>{3}/{2}\;</math>
 +
is bigger than
 +
<math>{4}/{3}\;</math>
 +
and the base
 +
<math>5</math>
 +
is bigger than
 +
<math>1</math>.

Version vom 12:59, 15. Sep. 2008

Both \displaystyle 125 and \displaystyle 625 can be written as powers of \displaystyle 5,


\displaystyle \begin{align} & 125=5\centerdot 5=5\centerdot 5\centerdot 5=5^{3} \\ & \\ & 625=5\centerdot 125=5\centerdot 5^{3}=5^{4} \\ & \\ \end{align}

and this means that


\displaystyle \begin{align} & 125^{\frac{1}{2}}=\left( 5^{3} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{1}{2}}=5^{\frac{3}{2}} \\ & \\ & 625=\left( 5^{4} \right)^{\frac{1}{3}}=5^{4\centerdot \frac{1}{3}}=5^{\frac{4}{3}} \\ \end{align}


From this, we see that \displaystyle 125^{\frac{1}{2}}>625^{\frac{1}{3}}, since the exponent \displaystyle {3}/{2}\; is bigger than \displaystyle {4}/{3}\; and the base \displaystyle 5 is bigger than \displaystyle 1.