Lösung 1.3:6d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:6d moved to Solution 1.3:6d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
One way to compare the two numbers is to rewrite the power
-
<center> [[Image:1_3_6d.gif]] </center>
+
<math>\left( 5^{\frac{1}{3}} \right)^{4}</math>
-
{{NAVCONTENT_STOP}}
+
so that it has the same exponent as
 +
<math>400^{\frac{1}{3}}</math>,
 +
 
 +
 
 +
<math>\left( 5^{\frac{1}{3}} \right)^{4}=5^{\frac{1}{3}\centerdot 4}=5^{4\centerdot \frac{1}{3}}=\left( 5^{4} \right)^{\frac{1}{3}}=\left( 5\centerdot 5\centerdot 5\centerdot 5 \right)^{\frac{1}{3}}=625^{\frac{1}{3}}</math>.
 +
 
 +
Now, we see that
 +
<math>\left( 5^{\frac{1}{3}} \right)^{4}>400^{\frac{1}{3}}</math>, because
 +
<math>625>400</math>
 +
and the exponent
 +
<math>\frac{1}{3}</math>
 +
is positive.

Version vom 12:56, 15. Sep. 2008

One way to compare the two numbers is to rewrite the power \displaystyle \left( 5^{\frac{1}{3}} \right)^{4} so that it has the same exponent as \displaystyle 400^{\frac{1}{3}},


\displaystyle \left( 5^{\frac{1}{3}} \right)^{4}=5^{\frac{1}{3}\centerdot 4}=5^{4\centerdot \frac{1}{3}}=\left( 5^{4} \right)^{\frac{1}{3}}=\left( 5\centerdot 5\centerdot 5\centerdot 5 \right)^{\frac{1}{3}}=625^{\frac{1}{3}}.

Now, we see that \displaystyle \left( 5^{\frac{1}{3}} \right)^{4}>400^{\frac{1}{3}}, because \displaystyle 625>400 and the exponent \displaystyle \frac{1}{3} is positive.