Lösung 1.3:5f
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.3:5f moved to Solution 1.3:5f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The whole expression is quite complicated, so it can be useful to simplify the terms |
- | < | + | <math>\left( 125^{\frac{1}{3}} \right)^{2}</math> |
- | {{ | + | and |
+ | <math>\left( 27^{\frac{1}{3}} \right)^{-2}</math> | ||
+ | first: | ||
+ | |||
+ | |||
+ | <math>\left( 125^{\frac{1}{3}} \right)^{2}=125^{\frac{1}{3}\centerdot 2}=125^{\frac{2}{3}}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\left( 27^{\frac{1}{3}} \right)^{-2}=27^{\frac{1}{3}\centerdot \left( -2 \right)}=27^{-\frac{2}{3}}</math> | ||
+ | |||
+ | |||
+ | Then, the bases | ||
+ | <math>125,\ \ 27</math> | ||
+ | and | ||
+ | <math>9</math> | ||
+ | can be rewritten as | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 125=5\centerdot 25=5\centerdot 5\centerdot 5=5^{3} \\ | ||
+ | & \\ | ||
+ | & 27=3\centerdot 9=3\centerdot 3\centerdot 3=3^{3} \\ | ||
+ | & \\ | ||
+ | & 9=3\centerdot 3=3^{2} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | With the help of the power rules, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( 125^{\frac{1}{3}} \right)^{2}\centerdot \left( 27^{\frac{1}{3}} \right)^{-2}\centerdot 9^{\frac{1}{2}}=125^{\frac{2}{3}}\centerdot 27^{-\frac{2}{3}}\centerdot 9^{\frac{1}{2}} \\ | ||
+ | & \\ | ||
+ | & =\left( 5^{3} \right)^{\frac{2}{3}}\centerdot \left( 3^{3} \right)^{-\frac{2}{3}}\centerdot \left( 3^{2} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{2}{3}}\centerdot 3^{3\centerdot \left( -\frac{2}{3} \right)}\centerdot 3^{2\centerdot \frac{1}{2}} \\ | ||
+ | & \\ | ||
+ | & =5^{2}\centerdot 3^{-2}\centerdot 3^{1}=5^{2}\centerdot 3^{-2+1}=5^{2}\centerdot 3^{-1}=5\centerdot 5\centerdot \frac{1}{3} \\ | ||
+ | & \\ | ||
+ | & \frac{25}{3} \\ | ||
+ | \end{align}</math> |
Version vom 12:49, 15. Sep. 2008
The whole expression is quite complicated, so it can be useful to simplify the terms \displaystyle \left( 125^{\frac{1}{3}} \right)^{2} and \displaystyle \left( 27^{\frac{1}{3}} \right)^{-2} first:
\displaystyle \left( 125^{\frac{1}{3}} \right)^{2}=125^{\frac{1}{3}\centerdot 2}=125^{\frac{2}{3}}
\displaystyle \left( 27^{\frac{1}{3}} \right)^{-2}=27^{\frac{1}{3}\centerdot \left( -2 \right)}=27^{-\frac{2}{3}}
Then, the bases
\displaystyle 125,\ \ 27
and
\displaystyle 9
can be rewritten as
\displaystyle \begin{align}
& 125=5\centerdot 25=5\centerdot 5\centerdot 5=5^{3} \\
& \\
& 27=3\centerdot 9=3\centerdot 3\centerdot 3=3^{3} \\
& \\
& 9=3\centerdot 3=3^{2} \\
\end{align}
With the help of the power rules,
\displaystyle \begin{align}
& \left( 125^{\frac{1}{3}} \right)^{2}\centerdot \left( 27^{\frac{1}{3}} \right)^{-2}\centerdot 9^{\frac{1}{2}}=125^{\frac{2}{3}}\centerdot 27^{-\frac{2}{3}}\centerdot 9^{\frac{1}{2}} \\
& \\
& =\left( 5^{3} \right)^{\frac{2}{3}}\centerdot \left( 3^{3} \right)^{-\frac{2}{3}}\centerdot \left( 3^{2} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{2}{3}}\centerdot 3^{3\centerdot \left( -\frac{2}{3} \right)}\centerdot 3^{2\centerdot \frac{1}{2}} \\
& \\
& =5^{2}\centerdot 3^{-2}\centerdot 3^{1}=5^{2}\centerdot 3^{-2+1}=5^{2}\centerdot 3^{-1}=5\centerdot 5\centerdot \frac{1}{3} \\
& \\
& \frac{25}{3} \\
\end{align}