Lösung 1.3:4d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:4d moved to Solution 1.3:4d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The partial expression
-
<center> [[Image:1_3_4d.gif]] </center>
+
<math>2^{2^{3}}</math>
-
{{NAVCONTENT_STOP}}
+
should be interpreted as
 +
<math>2</math>
 +
raised to the
 +
<math>2^{3}</math>,
 +
 
 +
and because
 +
<math>2^{3}=2\centerdot 2\centerdot 2=8</math>, thus
 +
<math>2^{2^{3}}=2^{8}</math>
 +
 
 +
 
 +
In order to calculate the next part of the expression,
 +
<math>\left( -2 \right)^{-4}</math>,
 +
 
 +
it can be useful to do it a step at a time:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \left( -2 \right)^{-4}=\frac{1}{\left( -2 \right)^{4}}=\frac{1}{\left( \left( -1 \right)\centerdot 2 \right)^{4}}=\frac{1}{\left( -1 \right)^{4}\centerdot 2^{4}} \\
 +
& \\
 +
& =\frac{1}{1^{4}\centerdot 2^{4}}=\frac{1}{2^{4}}=2^{-4} \\
 +
\end{align}</math>
 +
 
 +
 
 +
Thus,
 +
 
 +
 
 +
<math>2^{2^{3}}\centerdot \left( -2 \right)^{-4}=2^{8}\centerdot 2^{-4}=2^{8-4}=2^{4}=16</math>

Version vom 11:53, 15. Sep. 2008

The partial expression \displaystyle 2^{2^{3}} should be interpreted as \displaystyle 2 raised to the \displaystyle 2^{3},

and because \displaystyle 2^{3}=2\centerdot 2\centerdot 2=8, thus \displaystyle 2^{2^{3}}=2^{8}


In order to calculate the next part of the expression, \displaystyle \left( -2 \right)^{-4},

it can be useful to do it a step at a time:


\displaystyle \begin{align} & \left( -2 \right)^{-4}=\frac{1}{\left( -2 \right)^{4}}=\frac{1}{\left( \left( -1 \right)\centerdot 2 \right)^{4}}=\frac{1}{\left( -1 \right)^{4}\centerdot 2^{4}} \\ & \\ & =\frac{1}{1^{4}\centerdot 2^{4}}=\frac{1}{2^{4}}=2^{-4} \\ \end{align}


Thus,


\displaystyle 2^{2^{3}}\centerdot \left( -2 \right)^{-4}=2^{8}\centerdot 2^{-4}=2^{8-4}=2^{4}=16