Lösung 1.3:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:4b moved to Solution 1.3:4b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The numbers
-
<center> [[Image:1_3_4b.gif]] </center>
+
<math>9</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>27</math>
 +
can both be written as powers of
 +
<math>3</math>,
 +
 
 +
 
 +
<math>\begin{align}
 +
& 9=3\centerdot 3=3^{2} \\
 +
& \\
 +
& 27=3\centerdot 9=3\centerdot 3\centerdot 3=3^{3} \\
 +
\end{align}</math>
 +
 
 +
 
 +
Thus, all factors in the expression can be written using a common base
 +
 
 +
and the whole product can be simplified using the power rules
 +
 
 +
 
 +
<math>\begin{align}
 +
& 3^{13}\centerdot 9^{-3}27^{-2}=3^{13}\centerdot \left( 3^{2} \right)^{-3}\centerdot \left( 3^{3} \right)^{-2} \\
 +
& \\
 +
& =3^{13}\centerdot 3^{2\centerdot \left( -3 \right)}\centerdot 3^{3\centerdot \left( -2 \right)}=3^{13}\centerdot 3^{-6}\centerdot 3^{-6} \\
 +
& \\
 +
& =3^{13-6-6}=3^{1}=3 \\
 +
\end{align}</math>

Version vom 11:48, 15. Sep. 2008

The numbers \displaystyle 9 and \displaystyle 27 can both be written as powers of \displaystyle 3,


\displaystyle \begin{align} & 9=3\centerdot 3=3^{2} \\ & \\ & 27=3\centerdot 9=3\centerdot 3\centerdot 3=3^{3} \\ \end{align}


Thus, all factors in the expression can be written using a common base

and the whole product can be simplified using the power rules


\displaystyle \begin{align} & 3^{13}\centerdot 9^{-3}27^{-2}=3^{13}\centerdot \left( 3^{2} \right)^{-3}\centerdot \left( 3^{3} \right)^{-2} \\ & \\ & =3^{13}\centerdot 3^{2\centerdot \left( -3 \right)}\centerdot 3^{3\centerdot \left( -2 \right)}=3^{13}\centerdot 3^{-6}\centerdot 3^{-6} \\ & \\ & =3^{13-6-6}=3^{1}=3 \\ \end{align}