Lösung 1.2:6
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.2:6 moved to Solution 1.2:6: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | When we work with large expressions, it is often best to proceed step by step. A first step on the way can be to simplify all the parts: |
- | < | + | |
- | < | + | |
- | {{ | + | <math>\frac{2}{3+\frac{1}{2}}\ ,\quad \frac{\frac{1}{2}}{\frac{1}{4}-\frac{1}{3}}</math> |
+ | and | ||
+ | <math>\frac{3}{2-\frac{2}{7}}</math> | ||
+ | |||
+ | |||
+ | We can do this by multiplying the top and bottom of each fraction by | ||
+ | <math>2</math> | ||
+ | , | ||
+ | <math>12</math> | ||
+ | and | ||
+ | <math>7</math> | ||
+ | respectively, so as to get rid of the partial fractions: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{2}{3+\frac{1}{2}}=\ \frac{2\centerdot 2}{\left( 3+\frac{1}{2} \right)\centerdot 2}=\frac{4}{3\centerdot 2+\frac{1}{2}\centerdot 2}=\frac{4}{6+1}=\frac{4}{7} \\ | ||
+ | & \\ | ||
+ | & \frac{\frac{1}{2}}{\frac{1}{4}-\frac{1}{3}}=\frac{\frac{1}{2}\centerdot 12}{\left( \frac{1}{4}-\frac{1}{3} \right)\centerdot 12}=\frac{6}{\frac{12}{4}-\frac{12}{3}}=\frac{6}{3-4}=\frac{6}{-1}=-6 \\ | ||
+ | & \\ | ||
+ | & \frac{3}{2-\frac{2}{7}}=\frac{3\centerdot 7}{\left( 2-\frac{2}{7} \right)\centerdot 7}=\frac{21}{2\centerdot 7-\frac{2}{7}\centerdot 7}=\frac{21}{14-2}=\frac{21}{12} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | The whole expression therefore equals | ||
+ | |||
+ | |||
+ | <math>\frac{\frac{4}{7}-6}{\frac{1}{2}-\frac{21}{12}}</math> | ||
+ | |||
+ | |||
+ | |||
+ | If we multiply the tops and bottoms of the fractions | ||
+ | <math></math> | ||
+ | |||
+ | <math>{4}/{7}\;</math> | ||
+ | , | ||
+ | <math>{1}/{2}\;</math> | ||
+ | and | ||
+ | <math>{21}/{12}\;</math> | ||
+ | in the main fraction by | ||
+ | their lowest common denominator, | ||
+ | <math>7\centerdot 12</math> | ||
+ | , we obtain integers in the numerator and denominator: | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{\frac{4}{7}-6}{\frac{1}{2}-\frac{21}{12}}=\frac{\left( \frac{4}{7}-6 \right)\centerdot 7\centerdot 12}{\left( \frac{1}{2}-\frac{21}{12} \right)\centerdot 7\centerdot 12}=\frac{4\centerdot 12-6\centerdot 7\centerdot 12}{7\centerdot 6-21\centerdot 7} \\ | ||
+ | & \\ | ||
+ | & =\frac{\left( 4-6\centerdot 7 \right)\centerdot 12}{\left( 6-21 \right)\centerdot 7}=\frac{-38\centerdot 12}{-15\centerdot 7}=\frac{38\centerdot 12}{15\centerdot 7} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | By factorizing | ||
+ | <math>12</math> | ||
+ | , | ||
+ | <math>15</math> | ||
+ | and | ||
+ | <math>38</math> | ||
+ | , | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\ | ||
+ | & 15=3\centerdot 5 \\ | ||
+ | & 38=2\centerdot 19 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | the answer can be simplified to | ||
+ | |||
+ | |||
+ | <math>\frac{38\centerdot 12}{15\centerdot 7}=\frac{2\centerdot 19\centerdot 2\centerdot 2\centerdot 3}{3\centerdot 5\centerdot 7}=\frac{153}{35}</math> |
Version vom 14:48, 11. Sep. 2008
When we work with large expressions, it is often best to proceed step by step. A first step on the way can be to simplify all the parts:
\displaystyle \frac{2}{3+\frac{1}{2}}\ ,\quad \frac{\frac{1}{2}}{\frac{1}{4}-\frac{1}{3}}
and
\displaystyle \frac{3}{2-\frac{2}{7}}
We can do this by multiplying the top and bottom of each fraction by
\displaystyle 2
,
\displaystyle 12
and
\displaystyle 7
respectively, so as to get rid of the partial fractions:
\displaystyle \begin{align}
& \frac{2}{3+\frac{1}{2}}=\ \frac{2\centerdot 2}{\left( 3+\frac{1}{2} \right)\centerdot 2}=\frac{4}{3\centerdot 2+\frac{1}{2}\centerdot 2}=\frac{4}{6+1}=\frac{4}{7} \\
& \\
& \frac{\frac{1}{2}}{\frac{1}{4}-\frac{1}{3}}=\frac{\frac{1}{2}\centerdot 12}{\left( \frac{1}{4}-\frac{1}{3} \right)\centerdot 12}=\frac{6}{\frac{12}{4}-\frac{12}{3}}=\frac{6}{3-4}=\frac{6}{-1}=-6 \\
& \\
& \frac{3}{2-\frac{2}{7}}=\frac{3\centerdot 7}{\left( 2-\frac{2}{7} \right)\centerdot 7}=\frac{21}{2\centerdot 7-\frac{2}{7}\centerdot 7}=\frac{21}{14-2}=\frac{21}{12} \\
\end{align}
The whole expression therefore equals
\displaystyle \frac{\frac{4}{7}-6}{\frac{1}{2}-\frac{21}{12}}
If we multiply the tops and bottoms of the fractions \displaystyle
\displaystyle {4}/{7}\; , \displaystyle {1}/{2}\; and \displaystyle {21}/{12}\; in the main fraction by their lowest common denominator, \displaystyle 7\centerdot 12 , we obtain integers in the numerator and denominator:
\displaystyle \begin{align}
& \frac{\frac{4}{7}-6}{\frac{1}{2}-\frac{21}{12}}=\frac{\left( \frac{4}{7}-6 \right)\centerdot 7\centerdot 12}{\left( \frac{1}{2}-\frac{21}{12} \right)\centerdot 7\centerdot 12}=\frac{4\centerdot 12-6\centerdot 7\centerdot 12}{7\centerdot 6-21\centerdot 7} \\
& \\
& =\frac{\left( 4-6\centerdot 7 \right)\centerdot 12}{\left( 6-21 \right)\centerdot 7}=\frac{-38\centerdot 12}{-15\centerdot 7}=\frac{38\centerdot 12}{15\centerdot 7} \\
\end{align}
By factorizing
\displaystyle 12
,
\displaystyle 15
and
\displaystyle 38
,
\displaystyle \begin{align}
& 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\
& 15=3\centerdot 5 \\
& 38=2\centerdot 19 \\
\end{align}
the answer can be simplified to
\displaystyle \frac{38\centerdot 12}{15\centerdot 7}=\frac{2\centerdot 19\centerdot 2\centerdot 2\centerdot 3}{3\centerdot 5\centerdot 7}=\frac{153}{35}