Lösung 1.1:2b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.1:2b moved to Solution 1.1:2b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | + | When calculating, the innermost part of the expression should always be calculated first. | |
:<math>3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5) = 3-((\bbox[#FFEEAA;,1.5pt]{\,3\,}+6)-5)</math>. | :<math>3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5) = 3-((\bbox[#FFEEAA;,1.5pt]{\,3\,}+6)-5)</math>. | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | In the resulting expression we again pick out and calculate the innermost part | |
:<math>\phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-(\firstcbox{#FFEEAA;}{\,(3+6)\,}{9}-5)</math> | :<math>\phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-(\firstcbox{#FFEEAA;}{\,(3+6)\,}{9}-5)</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
:<math>\phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-(\secondcbox{#FFEEAA;}{\,(3+6)\,}{9}-5)</math>. | :<math>\phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-(\secondcbox{#FFEEAA;}{\,(3+6)\,}{9}-5)</math>. | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | Now there is just one bracket to calculate | |
:<math>\phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-\firstcbox{#FFEEAA;}{\,(9-5)\,}{4}</math> | :<math>\phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-\firstcbox{#FFEEAA;}{\,(9-5)\,}{4}</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
:<math>\phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-\secondcbox{#FFEEAA;}{\,(9-5)\,}{4}</math> | :<math>\phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-\secondcbox{#FFEEAA;}{\,(9-5)\,}{4}</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | and now there is only an expression without brackets left to calculate | |
:<math>\phantom{3-((\firstcbox{#FFEEAA;}{\,(7-4)\,}{3}+6)-5)}{} = -1</math>. | :<math>\phantom{3-((\firstcbox{#FFEEAA;}{\,(7-4)\,}{3}+6)-5)}{} = -1</math>. | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} | ||
<!--<center> [[Image:1_1_2b.gif]] </center> --> | <!--<center> [[Image:1_1_2b.gif]] </center> --> |
Version vom 13:10, 13. Sep. 2008
When calculating, the innermost part of the expression should always be calculated first.
- \displaystyle 3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5) = 3-((\bbox[#FFEEAA;,1.5pt]{\,3\,}+6)-5).
In the resulting expression we again pick out and calculate the innermost part
- \displaystyle \phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-(\firstcbox{#FFEEAA;}{\,(3+6)\,}{9}-5)
- \displaystyle \phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-(\secondcbox{#FFEEAA;}{\,(3+6)\,}{9}-5).
Now there is just one bracket to calculate
- \displaystyle \phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-\firstcbox{#FFEEAA;}{\,(9-5)\,}{4}
- \displaystyle \phantom{3-((\bbox[#FFEEAA;,1.5pt]{\,(7-4)\,}+6)-5)}{} = 3-\secondcbox{#FFEEAA;}{\,(9-5)\,}{4}
and now there is only an expression without brackets left to calculate
- \displaystyle \phantom{3-((\firstcbox{#FFEEAA;}{\,(7-4)\,}{3}+6)-5)}{} = -1.