Lösung 1.1:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.1:1d moved to Solution 1.1:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | + | Just as in exercise c, we calculate the innermost bracket | |
:<math>3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5</math> | :<math>3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | and work our way successively outwards, | |
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5</math> | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,</math>. | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,</math>. | ||
- | + | All that remains is to combine the terms from left to right | |
- | + | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5</math> | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} |
Version vom 12:42, 13. Sep. 2008
Just as in exercise c, we calculate the innermost bracket
- \displaystyle 3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5
and work our way successively outwards,
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,.
All that remains is to combine the terms from left to right
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \secondcbox{#FFEEAA;}{\,3-(-3)\,}{3+3}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \secondcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 1.