Lösung 1.1:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 1.1:1c moved to Solution 1.1:1c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | + | The brackets indicate in which order the expression is to be calculated, and we start by | |
+ | calculating the inner bracket. | ||
:<math>3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5) = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,}-5)</math>. | :<math>3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5) = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,}-5)</math>. | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | Then, we calculate the next bracket. | |
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3-\firstcbox{#FFEEAA;}{\,(7-10-5)\,}{(-8)}</math> | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3-\firstcbox{#FFEEAA;}{\,(7-10-5)\,}{(-8)}</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3-\secondcbox{#FFEEAA;}{\,(7-10-5)\,}{(-8)}</math> | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3-\secondcbox{#FFEEAA;}{\,(7-10-5)\,}{(-8)}</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | and when we remove the brackets in "<math>{}-(-8)</math>" we get "<math>{}+8</math>", | |
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3+8</math> | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3+8</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=11.</math> | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=11.</math> | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 12:37, 13. Sep. 2008
The brackets indicate in which order the expression is to be calculated, and we start by calculating the inner bracket.
- \displaystyle 3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5) = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,}-5).
Then, we calculate the next bracket.
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3-\firstcbox{#FFEEAA;}{\,(7-10-5)\,}{(-8)}
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3-\secondcbox{#FFEEAA;}{\,(7-10-5)\,}{(-8)}
and when we remove the brackets in "\displaystyle {}-(-8)" we get "\displaystyle {}+8",
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=3+8
- \displaystyle \phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,}-5)}{}=11.