2.1 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Translated links into English)
K (Robot: Automated text replacement (-Svar +Answer))
Zeile 31: Zeile 31:
||<math> (5x^3+3x^5)^2</math>
||<math> (5x^3+3x^5)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:1|Solution a|Lösning 2.1:1a|Solution b|Lösning 2.1:1b|Solution c|Lösning 2.1:1c|Solution d|Lösning 2.1:1d|Solution e|Lösning 2.1:1e|Solution f|Lösning 2.1:1f|Solution g|Lösning 2.1:1g|Solution h|Lösning 2.1:1h}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:1|Solution a|Lösning 2.1:1a|Solution b|Lösning 2.1:1b|Solution c|Lösning 2.1:1c|Solution d|Lösning 2.1:1d|Solution e|Lösning 2.1:1e|Solution f|Lösning 2.1:1f|Solution g|Lösning 2.1:1g|Solution h|Lösning 2.1:1h}}
Zeile 51: Zeile 51:
||<math> (a+b)^2+(a-b)^2</math>
||<math> (a+b)^2+(a-b)^2</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:2|Solution a|Lösning 2.1:2a|Solution b|Lösning 2.1:2b|Solution c|Lösning 2.1:2c|Solution d|Lösning 2.1:2d|Solution e|Lösning 2.1:2e}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:2|Solution a|Lösning 2.1:2a|Solution b|Lösning 2.1:2b|Solution c|Lösning 2.1:2c|Solution d|Lösning 2.1:2d|Solution e|Lösning 2.1:2e}}
===Exercise 2.1:3===
===Exercise 2.1:3===
Zeile 71: Zeile 71:
||<math> 16x^2+8x+1</math>
||<math> 16x^2+8x+1</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:3|Solution a|Lösning 2.1:3a|Solution b|Lösning 2.1:3b|Solution c|Lösning 2.1:3c|Solution d|Lösning 2.1:3d|Solution e|Lösning 2.1:3e|Solution f|Lösning 2.1:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:3|Solution a|Lösning 2.1:3a|Solution b|Lösning 2.1:3b|Solution c|Lösning 2.1:3c|Solution d|Lösning 2.1:3d|Solution e|Lösning 2.1:3e|Solution f|Lösning 2.1:3f}}
===Exercise 2.1:4===
===Exercise 2.1:4===
Zeile 87: Zeile 87:
|-
|-
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:4|Solution a|Lösning 2.1:4a|Solution b|Lösning 2.1:4b|Solution c|Lösning 2.1:4c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:4|Solution a|Lösning 2.1:4a|Solution b|Lösning 2.1:4b|Solution c|Lösning 2.1:4c}}
===Exercise 2.1:5===
===Exercise 2.1:5===
Zeile 103: Zeile 103:
|| <math>\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</math>
|| <math>\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:5|Solution a|Lösning 2.1:5a|Solution b|Lösning 2.1:5b|Solution c|Lösning 2.1:5c|Solution d|Lösning 2.1:5d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Lösning 2.1:5a|Solution b|Lösning 2.1:5b|Solution c|Lösning 2.1:5c|Solution d|Lösning 2.1:5d}}
===Exercise 2.1:6===
===Exercise 2.1:6===
Zeile 119: Zeile 119:
|| <math>\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</math>
|| <math>\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:6|Solution a|Lösning 2.1:6a|Solution b|Lösning 2.1:6b|Solution c|Lösning 2.1:6c|Solution d|Lösning 2.1:6d}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:6|Solution a|Lösning 2.1:6a|Solution b|Lösning 2.1:6b|Solution c|Lösning 2.1:6c|Solution d|Lösning 2.1:6d}}
===Exercise 2.1:7===
===Exercise 2.1:7===
Zeile 132: Zeile 132:
|width="33%" | <math>\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</math>
|width="33%" | <math>\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:7|Solution a|Lösning 2.1:7a|Solution b|Lösning 2.1:7b|Solution c|Lösning 2.1:7c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:7|Solution a|Lösning 2.1:7a|Solution b|Lösning 2.1:7b|Solution c|Lösning 2.1:7c}}
===Exercise 2.1:8===
===Exercise 2.1:8===
Zeile 145: Zeile 145:
|width="33%" | <math>\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}</math>
|width="33%" | <math>\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 2.1:8|Solution a|Lösning 2.1:8a|Solution b|Lösning 2.1:8b|Solution c|Lösning 2.1:8c}}
+
</div>{{#NAVCONTENT:Answer|Answer 2.1:8|Solution a|Lösning 2.1:8a|Solution b|Lösning 2.1:8b|Solution c|Lösning 2.1:8c}}

Version vom 07:06, 9. Sep. 2008

 

Vorlage:Ej vald flik Vorlage:Vald flik

 


Exercise 2.1:1

Expand

a) \displaystyle 3x(x-1) b) \displaystyle (1+x-x^2)xy c) \displaystyle -x^2(4-y^2)
d) \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) e) \displaystyle (x-7)^2 f) \displaystyle (5+4y)^2
g) \displaystyle (y^2-3x^3)^2 h) \displaystyle (5x^3+3x^5)^2


Exercise 2.1:2

Expand

a) \displaystyle (x-4)(x-5)-3x(2x-3) b) \displaystyle (1-5x)(1+15x)-3(2-5x)(2+5x)
c) \displaystyle (3x+4)^2-(3x-2)(3x-8) d) \displaystyle (3x^2+2)(3x^2-2)(9x^4+4)
e) \displaystyle (a+b)^2+(a-b)^2

Exercise 2.1:3

Factorise and simplify as much as possible

a) \displaystyle x^2-36 b) \displaystyle 5x^2-20 c) \displaystyle x^2+6x+9
d) \displaystyle x^2-10x+25 e) \displaystyle 18x-2x^3 f) \displaystyle 16x^2+8x+1

Exercise 2.1:4

Determine the coefficients in front of \displaystyle \,x\, and \displaystyle \,x^2\ when the following expressions are expanded out.

a) \displaystyle (x+2)(3x^2-x+5)
b) \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4)
c) \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)

Exercise 2.1:5

Simplify as much as possible

a) \displaystyle \displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x} b) \displaystyle \displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4}
c) \displaystyle \displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)} d) \displaystyle \displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}

Exercise 2.1:6

Simplify as much as possible

a) \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \displaystyle \left(\displaystyle\frac{y}{2x-y}-1\right) b) \displaystyle \displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2
c) \displaystyle \displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b} d) \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}

Exercise 2.1:7

Simplify the following fractions by writing them as an expression having a common fraction sign

a) \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} b) \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} c) \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}

Exercise 2.1:8

Simplify the following fractions by writing them as an expression having a common fraction sign

a) \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } b) \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} c) \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}