Lösung 2.1:1e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <!--center> [[ | + | <!--center> [[Image:2_1_1e.gif]] </center--> |
If we use the rule for squaring <math>(a-b)^2 = a^2-2ab+b^2 </math> with <math> a=x </math> and <math> b=7, </math> we obtain directly that | If we use the rule for squaring <math>(a-b)^2 = a^2-2ab+b^2 </math> with <math> a=x </math> and <math> b=7, </math> we obtain directly that | ||
Version vom 06:32, 21. Aug. 2008
If we use the rule for squaring \displaystyle (a-b)^2 = a^2-2ab+b^2 with \displaystyle a=x and \displaystyle b=7, we obtain directly that
- \displaystyle (x-7)^2=x^2-2 \cdot x \cdot 7 + 7^2 = x^2-14x+49.
An alternative is to write the square as \displaystyle (x-7)\cdot (x-7) and then multiply the brackets in two steps
\displaystyle \qquad \begin{align} (x-7)\cdot (x-7) &= (x-7)\cdot x - (x-7)\cdot 7 \\ &= x\cdot x-7 \cdot x -(x\cdot 7 - 7\cdot 7) \\ &= x^2 -7x-(7x-49)\\ & \stackrel{*}= x^2-7x-7x+49 \\ &= x^2-(7+7)x+49\\ &= x^2-14x+49 \end{align}
In the line that has been marked with an asterisk, we have removed the bracket and at the same time changed signs on all terms inside the bracket.