Lösung 2.1:1b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math> | + | When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>; |
+ | <math> | ||
+ | \qquad | ||
+ | \begin{align} | ||
+ | (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy \\ | ||
+ | &= xy+x^2y-x^3y | ||
+ | \end{align} | ||
+ | </math> | ||
<!-- <center> [[Bild:2_1_1b.gif]] </center> --> | <!-- <center> [[Bild:2_1_1b.gif]] </center> --> | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 08:33, 13. Aug. 2008
When the factor \displaystyle xy is multiplied by the expression inside the brackets, \displaystyle 1+x+x^2 , the distributive rule gives that all three terms \displaystyle 1, \displaystyle x and \displaystyle -x^2 are multiplied by \displaystyle xy;
\displaystyle \qquad \begin{align} (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy \\ &= xy+x^2y-x^3y \end{align}