1.2 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 8: Zeile 8:
-
===Övning 1.2:1===
+
===Exercise 1.2:1===
<div class="ovning">
<div class="ovning">
Write as one fraction
Write as one fraction
Zeile 27: Zeile 27:
-
===Övning 1.2:2===
+
===Exercise 1.2:2===
<div class="ovning">
<div class="ovning">
Determine the lowest common denominator of
Determine the lowest common denominator of
Zeile 44: Zeile 44:
-
===Övning 1.2:3===
+
===Exercise 1.2:3===
<div class="ovning">
<div class="ovning">
Calcualte the following by using the lowest common denominator.
Calcualte the following by using the lowest common denominator.
Zeile 56: Zeile 56:
-
===Övning 1.2:4===
+
===Exercise 1.2:4===
<div class="ovning">
<div class="ovning">
Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.
Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.
Zeile 70: Zeile 70:
-
===Övning 1.2:5===
+
===Exercise 1.2:5===
<div class="ovning">
<div class="ovning">
Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.
Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.
Zeile 84: Zeile 84:
-
===Övning 1.2:6===
+
===Exercise 1.2:6===
<div class="ovning">
<div class="ovning">
Simplify
Simplify
<math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math>
<math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math>
</div>{{#NAVCONTENT:Svar|Svar 1.2:6|Lösning |Lösning 1.2:6}}
</div>{{#NAVCONTENT:Svar|Svar 1.2:6|Lösning |Lösning 1.2:6}}

Version vom 11:05, 3. Aug. 2008

 

Vorlage:Ej vald flik Vorlage:Vald flik

 


Exercise 1.2:1

Write as one fraction

a) \displaystyle \displaystyle \frac{7}{4}+\frac{11}{7} b) \displaystyle \displaystyle \frac{2}{7}-\frac{1}{5} c) \displaystyle \displaystyle \frac{1}{6}-\frac{2}{5}
d) \displaystyle \displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5} e) \displaystyle \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}


Exercise 1.2:2

Determine the lowest common denominator of

a) \displaystyle \displaystyle \frac{1}{6}+\frac{1}{10} b) \displaystyle \displaystyle \frac{1}{4}-\frac{1}{8}
c) \displaystyle \displaystyle \frac{1}{12}-\frac{1}{14} d) \displaystyle \displaystyle \frac{2}{45}+\frac{1}{75}


Exercise 1.2:3

Calcualte the following by using the lowest common denominator.

a) \displaystyle \displaystyle\frac{3}{20}+\frac{7}{50}-\frac{1}{10} b) \displaystyle \displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}


Exercise 1.2:4

Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.

a) \displaystyle \displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}} b) \displaystyle \displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}} c) \displaystyle \displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}


Exercise 1.2:5

Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.

a) \displaystyle \displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}} b) \displaystyle \displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}} c) \displaystyle \displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}


Exercise 1.2:6

Simplify \displaystyle \ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}