1.3 Potenzen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 51: Zeile 51:
= 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001</math></li>
= 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001</math></li>
<li><math>(-2)^4
<li><math>(-2)^4
-
= (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, men <math> -2^4
+
= (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, but <math> -2^4
= -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li>
= -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li>
-
<li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, men <math>
+
<li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, but <math>
(2\cdot3)^2 = 6^2 = 36</math></li>
(2\cdot3)^2 = 6^2 = 36</math></li>
</ol>
</ol>
Zeile 79: Zeile 79:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{och}\quad (ab)^m = a^m b^m\,\mbox{.}</math>}}
+
{{Fristående formel||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.}</math>}}
</div>
</div>
Zeile 194: Zeile 194:
{{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{osv.}}</math>}}
{{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{osv.}}</math>}}
-
The rule is that <math>(-1)^n</math> is equal to<math>-1</math>
+
The rule is that <math>(-1)^n </math> is equal to<math>-1</math>
if <math>n</math> is odd and equal to <math>+1</math> if <math>n</math> is even .
if <math>n</math> is odd and equal to <math>+1</math> if <math>n</math> is even .
Zeile 272: Zeile 272:
</div>
</div>
-
We must assume that t <math>a\ge 0</math>, since no real number multiplied by itself can give a negative number.
+
We must assume that <math>a\ge 0</math>, since no real number multiplied by itself can give a negative number.
We also see that, for example,
We also see that, for example,
Zeile 283: Zeile 283:
</div>
</div>
-
By combining this definition with one of the previous laws of exponents <math>((a^m)^n=a^{m\cdot n})</math> gives that for all<math>a\ge0</math> it holds that
+
By combining this definition with one of the previous laws of exponents <math>((a^m)^n=a^{m\cdot n})</math> gives that for all <math>a\ge0</math> it holds that
<div class="regel">
<div class="regel">
Zeile 298: Zeile 298:
<ol type="a">
<ol type="a">
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27}
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27}
-
= 3\quad</math> eftersom <math>3 \cdot 3 \cdot 3 =27</math></li>
+
= 3\quad</math> as <math>3 \cdot 3 \cdot 3 =27</math></li>
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}}
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}}
= \frac{1}{(10^3)^{1/3}}
= \frac{1}{(10^3)^{1/3}}
Zeile 352: Zeile 352:
<ol type="a">
<ol type="a">
-
<li><math> 25^{1/3} </math>&nbsp; och &nbsp;<math> 5^{3/4} </math>.
+
<li><math> 25^{1/3} </math>&nbsp; and &nbsp;<math> 5^{3/4} </math>.
<br>
<br>
<br>
<br>
-
The base 25 can be written about in terms of the second base <math>5</math> by putting<math>25= 5\cdot 5= 5^2</math>. Therefore
+
The base 25 can be written about in terms of the second base <math>5</math> by putting <math>25= 5\cdot 5= 5^2</math>. Therefore
{{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}}
{{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}}
Zeile 365: Zeile 365:
since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li>
since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li>
-
<li><math>(\sqrt{8}\,)^5 </math>&nbsp; och <math>128</math>.
+
<li><math>(\sqrt{8}\,)^5 </math>&nbsp; and <math>128</math>.
<br>
<br>
<br>
<br>
Zeile 386: Zeile 386:
because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li>
because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li>
-
<li><math> (8^2)^{1/5} </math> och <math> (\sqrt{27}\,)^{4/5}</math>.
+
<li><math> (8^2)^{1/5} </math> and <math> (\sqrt{27}\,)^{4/5}</math>.
<br>
<br>
<br>
<br>
Zeile 404: Zeile 404:
{{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}}
{{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}}
-
because <math> 3>2</math> and exponent<math>\frac{6}{5}</math> is positive.
+
because <math> 3>2</math> and exponent <math>\frac{6}{5}</math> is positive.
-
<li><math> 3^{1/3} </math>&nbsp; och &nbsp;<math> 2^{1/2}</math>
+
<li><math> 3^{1/3} </math>&nbsp; and &nbsp;<math> 2^{1/2}</math>
<br>
<br>
<br>
<br>
Zeile 424: Zeile 424:
{{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}}
{{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}}
-
because <math> 9>8</math> and the exponent<math>1/6</math> is positive.</li>
+
because <math> 9>8</math> and the exponent <math>1/6</math> is positive.</li>
</ol>
</ol>
</div>
</div>

Version vom 17:15, 6. Aug. 2008

 

Vorlage:Vald flik Vorlage:Ej vald flik

 

Content:

  • Positive integer exponent
  • Negative integer exponent
  • Rational exponents
  • Laws of exponents

Learning outcomes:

After this section, you will have learned to:

  • Recognise the concepts of base and exponent.
  • Calculate integer power expressions
  • Use the laws of exponents to simplify expressions containing powers.
  • Know when the laws of exponents are applicable (positive basis).
  • Determine which of two powers is the larger based on a comparison of the base / exponent.

Integer exponents

We use the multiplication symbol as a short-hand for repeated addition of the same number, for example,

Vorlage:Fristående formel

In a similar way we use exponentials as a short-hand for repeated multiplication of the same number:

Vorlage:Fristående formel

The 4 is called the base of the power, and the 5 is its exponent.

Example 1

  1. \displaystyle 5^3 = 5 \cdot 5 \cdot 5 = 125
  2. \displaystyle 10^5 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000
  3. \displaystyle 0{,}1^3 = 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001
  4. \displaystyle (-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16, but \displaystyle -2^4 = -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16
  5. \displaystyle 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18, but \displaystyle (2\cdot3)^2 = 6^2 = 36

Exempel 2

  1. \displaystyle \left(\displaystyle\frac{2}{3}\right)^3 = \displaystyle\frac{2}{3}\cdot \displaystyle\frac{2}{3} \cdot \displaystyle\frac{2}{3} = \displaystyle\frac{2^3}{3^3} = \displaystyle\frac{8}{27}
  2. \displaystyle (2\cdot 3)^4 = (2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)
    \displaystyle \phantom{(2\cdot 3)^4}{} = 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3 = 2^4 \cdot 3^4 = 1296

The last example can be generalised to two useful rules when calculating powers:


Laws of exponents

There are a few more rules coming from the definition of power which are useful when doing calculations.You can see for example that

Vorlage:Fristående formel

which generally can be expressed as

There is also a useful simplification rule for division of powers which have the same base.

Vorlage:Fristående formel

The general rule is

For the case when the base itself is a power that is the power of a power one has another useful rule. We see that

Vorlage:Fristående formel

and

Vorlage:Fristående formel


Generally, this can be written

Example 3

  1. \displaystyle 2^9 \cdot 2^{14} = 2^{9+14} = 2^{23}
  2. \displaystyle 5\cdot5^3 = 5^1\cdot5^3 = 5^{1+3} = 5^4
  3. \displaystyle 3^2 \cdot 3^3 \cdot 3^4 = 3^{2+3+4} = 3^9
  4. \displaystyle 10^5 \cdot 1000 = 10^5 \cdot 10^3 = 10^{5+3} = 10^8

Exempel 4

  1. \displaystyle \frac{3^{100}}{3^{98}} = 3^{100-98} = 3^2
  2. \displaystyle \frac{7^{10}}{7} = \frac{7^{10}}{7^1} = 7^{10-1} = 7^9


If a fraction has the same expression for the exponent both in the numerator and the denominator we can simplify in two ways: Vorlage:Fristående formel


The only way for the rules of powers to agree is to make the following but natural definition that for all non zero a one has that


We can also run into examples where the exponent in the denominator is greater than that in the numerator. We can have, for example, Vorlage:Fristående formel

We see that it is necessary to assume that the negative exponent implies that Vorlage:Fristående formel


The general definition of negative exponents is to interpret negative exponents of all non zero numbers a as follows


Example 5

  1. \displaystyle \frac{7^{1293}}{7^{1293}} = 7^{1293 - 1293} = 7^0 = 1
  2. \displaystyle 3^7 \cdot 3^{-9} \cdot 3^4 = 3^{7+(-9)+4} = 3^2
  3. \displaystyle 0{,}001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}
  4. \displaystyle 0{,}008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}
  5. \displaystyle \left(\frac{2}{3}\right)^{-1} = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} = 1\cdot \frac{3}{2} = \frac{3}{2}
  6. \displaystyle \left(\frac{1}{3^2}\right)^{-3} = (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6
  7. \displaystyle 0.01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}

If the base of a power is \displaystyle -1 then the expression will simplify to either \displaystyle -1 or \displaystyle +1 depending on the value of the exponent

Vorlage:Fristående formel

The rule is that \displaystyle (-1)^n is equal to\displaystyle -1 if \displaystyle n is odd and equal to \displaystyle +1 if \displaystyle n is even .


Example 6

  1. \displaystyle (-1)^{56} = 1\quad as \displaystyle 56 is an even number
  2. \displaystyle \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad because 11 is an odd number
  3. \displaystyle \frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} = \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} = \frac{-1 \cdot 2^{127}}{2^{130}} \displaystyle \phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} = - \frac{1}{2^3} = - \frac{1}{8}


Changing the base

A point to observe is that when simplifying expressions try, if possible, to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base and, therefore, it is a good idea to learn to recognize the powers of these numbers, such as

Vorlage:Fristående formel

Vorlage:Fristående formel

Vorlage:Fristående formel

But even

Vorlage:Fristående formel

Vorlage:Fristående formel

Vorlage:Fristående formel

and so on.

Example 7

  1. Write \displaystyle \ 8^3 \cdot 4^{-2} \cdot 16\ as a power with base 2

    \displaystyle 8^3 \cdot 4^{-2} \cdot 16 = (2^3)^3 \cdot (2^2)^{-2} \cdot 2^4 = 2^{3 \cdot 3} \cdot 2^{2 \cdot (-2)} \cdot 2^4
    \displaystyle \qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9
  2. Write \displaystyle \ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ as a power with base 3.

    \displaystyle \frac{27^2 \cdot (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \cdot (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \cdot (3^{-2})^{-2}}{(3^4)^2}
    \displaystyle \qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2
  3. Write \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} in as simple a form as possible.

    \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} = \frac{3^4 \cdot (2^5)^2 \cdot \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \cdot 2^{5 \cdot 2} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot 2^1 +2^4} = \frac{3^4 \cdot 2^{10} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot(2^1+1)}
    \displaystyle \qquad\quad{} = \frac{ \displaystyle\frac{3^4 \cdot 2^{10} \cdot 2^2}{3^2}}{2^4 \cdot 3} = \frac{ 3^4 \cdot 2^{10} \cdot 2^2 }{3^2 \cdot 2^4 \cdot 3 } = 3^{4-2-1} \cdot 2^{10+2-4} = 3^1 \cdot 2^8= 3\cdot 2^8


Rational exponents

What happens if a number is raised to a rational exponent? Do the the definitions and the rules we have used above to do calculations still hold?

For instance, since Vorlage:Fristående formel so \displaystyle 2^{1/2} must be the same as \displaystyle \sqrt{2} because \displaystyle \sqrt2 is defined as the number which satisfies \displaystyle \sqrt2\cdot\sqrt2 = 2 .

Generally, we define

We must assume that \displaystyle a\ge 0, since no real number multiplied by itself can give a negative number.

We also see that, for example, Vorlage:Fristående formel

which means that \displaystyle \,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\, which can be generalised to

By combining this definition with one of the previous laws of exponents \displaystyle ((a^m)^n=a^{m\cdot n}) gives that for all \displaystyle a\ge0 it holds that

Example 8

  1. \displaystyle 27^{1/3} = \sqrt[\scriptstyle 3]{27} = 3\quad as \displaystyle 3 \cdot 3 \cdot 3 =27
  2. \displaystyle 1000^{-1/3} = \frac{1}{1000^{1/3}} = \frac{1}{(10^3)^{1/3}} = \frac{1}{10^{3 \cdot \frac{1}{3}}} = \frac{1}{10^1} = \frac{1}{10}
  3. \displaystyle \frac{1}{\sqrt{8}} = \frac{1}{8^{1/2}} = \frac{1}{(2^3)^{1/2}} = \frac{1}{2^{3/2}} = 2^{-3/2}
  4. \displaystyle \frac{1}{16^{-1/3}} = \frac{1}{(2^4)^{-1/3}} = \frac{1}{2^{-4/3}} = 2^{-(-4/3)}= 2^{4/3}


Comparison of powers

If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents.

If the base of a power greater than \displaystyle 1 then the power is larger the larger the exponent. On the other hand, if the base lies between \displaystyle 0 and \displaystyle 1 then the power decreases as the exponent grows.

Example 9

  1. \displaystyle \quad 3^{5/6} > 3^{3/4}\quad as the base \displaystyle 3 is greater than \displaystyle 1 and the first exponent \displaystyle 5/6 is greater than the second exponent \displaystyle 3/4.
  2. \displaystyle \quad 3^{-3/4} > 3^{-5/6}\quad as the base is greater than \displaystyle 1 and the exponents satisfy \displaystyle -3/4 > - 5/6.
  3. \displaystyle \quad 0{,}3^5 < 0{,}3^4 \quadas the base \displaystyle 0{,}3 is between \displaystyle 0 and \displaystyle 1 and \displaystyle 5 > 4.

If a power has a positive exponent, it will get larger the larger the base becomes. The opposite applies if the exponent is negative: that is the power decreases as the base gets larger.

Example 10

  1. \displaystyle \quad 5^{3/2} > 4^{3/2}\quad as the base \displaystyle 5 is larger than the base \displaystyle 4 and both powers have the same positive exponent \displaystyle 3/2.
  2. \displaystyle \quad 2^{-5/3} > 3^{-5/3}\quad as the bases satisfy \displaystyle 2<3 and the powers have a negative exponent \displaystyle -5/3.

Sometimes powers must be rewritten in order to determine the relative sizes. For example to compare \displaystyle 125^2 with \displaystyle 36^3one can rewrite them as Vorlage:Fristående formel

after which one can see that \displaystyle 36^3 > 125^2.

Example 11

Determine which of the following pairs of numbers is the greater

  1. \displaystyle 25^{1/3}   and  \displaystyle 5^{3/4} .

    The base 25 can be written about in terms of the second base \displaystyle 5 by putting \displaystyle 25= 5\cdot 5= 5^2. Therefore Vorlage:Fristående formel and then we see that Vorlage:Fristående formel since \displaystyle \frac{3}{4} > \frac{2}{3} and the base \displaystyle 5 is larger than \displaystyle 1.
  2. \displaystyle (\sqrt{8}\,)^5   and \displaystyle 128.

    Both \displaystyle 8 and \displaystyle 128 can be written as powers of \displaystyle 2 Vorlage:Fristående formel This means that Vorlage:Fristående formel and thus Vorlage:Fristående formel because \displaystyle \frac{15}{2} > \frac{14}{2} and the base \displaystyle 2 is greater than \displaystyle 1.
  3. \displaystyle (8^2)^{1/5} and \displaystyle (\sqrt{27}\,)^{4/5}.

    Since \displaystyle 8=2^3 and \displaystyle 27=3^3 a first step can be to simplify and write the numbers as powers of \displaystyle 2 and \displaystyle 3 respectively, Vorlage:Fristående formel Now we see that Vorlage:Fristående formel because \displaystyle 3>2 and exponent \displaystyle \frac{6}{5} is positive.
  4. \displaystyle 3^{1/3}   and  \displaystyle 2^{1/2}

    We rewrite the exponents so they have a common denominator Vorlage:Fristående formel Then we have that Vorlage:Fristående formel and we see that Vorlage:Fristående formel because \displaystyle 9>8 and the exponent \displaystyle 1/6 is positive.

Exercises


Study advice

Basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that:

The number raised to the power 0, is always 1, if the number (the base) is not 0.


Reviews

For those of you who want to deepen your studies or need more detailed explanations consider the following references

Learn more about powers in the English Wikipedi

What is the greatest prime number? Read more at The Prime Page


Länktips

Here you can practise the laws of exponents