Processing Math: Done
Lösung 2.1:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Formulierung) |
|||
Zeile 1: | Zeile 1: | ||
- | Nachdem <math> x^3y^2 </math> mit der Klammer multipliziert wird, kürzen wir den Bruch, sodass alle Faktoren die in Zähler und Nenner vorkommen verschwinden | + | Nachdem <math> x^3y^2 </math> mit der Klammer multipliziert wird, kürzen wir den Bruch, sodass alle Faktoren, die in Zähler und Nenner vorkommen verschwinden |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
Zeile 7: | Zeile 7: | ||
\end{align}</math>}} | \end{align}</math>}} | ||
- | Dafür haben wir folgende Rechnungen verwendet | + | Dafür haben wir folgende Rechnungen verwendet |
{{Abgesetzte Formel||<math>\begin{align} | {{Abgesetzte Formel||<math>\begin{align} | ||
\frac{x^3y^2}{y} &= \frac{x^3\cdot y\cdot{}\rlap{/}y}{\rlap{/}y}= x^3y\,,\\[5pt] | \frac{x^3y^2}{y} &= \frac{x^3\cdot y\cdot{}\rlap{/}y}{\rlap{/}y}= x^3y\,,\\[5pt] | ||
\frac{x^3y^2}{xy} &= \frac{\rlap{/}x\cdot x\cdot x \cdot y \cdot {}\rlap{/}y}{\rlap{/}x\cdot {}\rlap{/}y} = x\cdot x\cdot y = x^2y\,\textrm{.}\end{align}</math>}} | \frac{x^3y^2}{xy} &= \frac{\rlap{/}x\cdot x\cdot x \cdot y \cdot {}\rlap{/}y}{\rlap{/}x\cdot {}\rlap{/}y} = x\cdot x\cdot y = x^2y\,\textrm{.}\end{align}</math>}} |
Aktuelle Version
Nachdem
![]() ![]() ![]() ![]() ![]() ![]() |
Dafür haben wir folgende Rechnungen verwendet
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |