Lösung 4.2:3d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
(Replaced figure with metapost figure) |
||
Zeile 6: | Zeile 6: | ||
<math>0</math> und daher ist <math>\cos (7\pi/2) = \cos (3\pi/2) = 0\,</math>. | <math>0</math> und daher ist <math>\cos (7\pi/2) = \cos (3\pi/2) = 0\,</math>. | ||
- | + | <center>{{:4.2.3d - Solution - The unit circle with angle 3π/2 and point (0,-1)}}</center> |
Aktuelle Version
Wir subtrahieren \displaystyle 2\pi vom Winkel \displaystyle {7\pi }/{2}\, so oft, bis wir einen Winkel zwischen \displaystyle 0 und \displaystyle 2\pi erhalten:
\displaystyle \cos\frac{7\pi}{2} = \cos\Bigl(\frac{7\pi}{2}-2\pi\Bigr) = \cos\frac{3\pi}{2}\,\textrm{.} |
Wir sehen, dass die Gerade mit den Winkel \displaystyle 3\pi/2 zur x-Achse den Einheitskreis im Punkt (0,-1) schneidet. Die x-Koordinate des Schnittpunktes ist also \displaystyle 0 und daher ist \displaystyle \cos (7\pi/2) = \cos (3\pi/2) = 0\,.