Lösung 3.1:5a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_1_5a.gif </center> {{NAVCONTENT_STOP}}) |
K |
||
| (Der Versionsvergleich bezieht 9 dazwischen liegende Versionen mit ein.) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | Wir erweitern den Bruch mit <math>\sqrt{12}</math>, sodass wir den Nenner <math>\sqrt{12}\cdot\sqrt{12} = 12</math> erhalten: |
| - | < | + | |
| - | {{ | + | {{Abgesetzte Formel||<math>\frac{2}{\sqrt{12}} = \frac{2}{\sqrt{12}}\cdot \frac{\sqrt{12}}{\sqrt{12}} = \frac{2\sqrt{12}}{12} = \frac{2\sqrt{12}}{2\cdot 6} = \frac{\sqrt{12}}{6}\,\textrm{.}</math>}} |
| + | |||
| + | Dieser Ausdruck kann weiter vereinfacht werden, indem wir 12 als <math>12 = 2\cdot 6 = 2\cdot 2\cdot 3 = 2^2\cdot 3</math> schreiben | ||
| + | |||
| + | {{Abgesetzte Formel||<math>\frac{\sqrt{12}}{6} = \frac{\sqrt{2^2 3}}{6} = \frac{2\sqrt{3}}{6}= \frac{2\sqrt{3}}{2\cdot 3} = \frac{\sqrt{3}}{3}\,\textrm{.}</math>}} | ||
Aktuelle Version
Wir erweitern den Bruch mit \displaystyle \sqrt{12}, sodass wir den Nenner \displaystyle \sqrt{12}\cdot\sqrt{12} = 12 erhalten:
| \displaystyle \frac{2}{\sqrt{12}} = \frac{2}{\sqrt{12}}\cdot \frac{\sqrt{12}}{\sqrt{12}} = \frac{2\sqrt{12}}{12} = \frac{2\sqrt{12}}{2\cdot 6} = \frac{\sqrt{12}}{6}\,\textrm{.} |
Dieser Ausdruck kann weiter vereinfacht werden, indem wir 12 als \displaystyle 12 = 2\cdot 6 = 2\cdot 2\cdot 3 = 2^2\cdot 3 schreiben
| \displaystyle \frac{\sqrt{12}}{6} = \frac{\sqrt{2^2 3}}{6} = \frac{2\sqrt{3}}{6}= \frac{2\sqrt{3}}{2\cdot 3} = \frac{\sqrt{3}}{3}\,\textrm{.} |
