Lösung 4.4:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:06, 25. Aug. 2009) (bearbeiten) (rückgängig)
(Replaced figure with metapost figure)
 
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.)
Zeile 1: Zeile 1:
-
Falls wir <math>x + 40^{\circ}</math> als unbekannter Variabel betrachten, haben wir eine einfache trigonometrische Gleichung wie vorher. Wir sehen dass es im Intervall <math>0^{\circ}\le x+40^{\circ}\le 360^{\circ}</math> zwei Lösungen gibt, nämlich <math>x+40^{\circ} = 65^{\circ}</math> und die symmetrische Lösung <math>x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,</math>.
+
Falls wir <math>x + 40^{\circ}</math> als unbekannte Variable betrachten, haben wir eine einfache trigonometrische Gleichung wie vorher. Wir sehen, dass es im Intervall <math>0^{\circ}\le x+40^{\circ}\le 360^{\circ}</math> zwei Lösungen gibt, nämlich <math>x+40^{\circ} = 65^{\circ}</math> und die symmetrische Lösung <math>x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,</math>.
-
[[Image:4_4_3_c.gif|center]]
+
<center>{{:4.4.3c - Solution - Two unit circles with angles 65° and 115°, respectively}}</center>
-
Und die allgemeine Lösung ist
+
Die allgemeine Lösung ist damit
{{Abgesetzte Formel||<math>x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}</math>}}
{{Abgesetzte Formel||<math>x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}</math>}}
-
und also erhalten wir die Lösungen
+
Also erhalten wir die Lösungen
{{Abgesetzte Formel||<math>x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}</math>}}

Aktuelle Version

Falls wir \displaystyle x + 40^{\circ} als unbekannte Variable betrachten, haben wir eine einfache trigonometrische Gleichung wie vorher. Wir sehen, dass es im Intervall \displaystyle 0^{\circ}\le x+40^{\circ}\le 360^{\circ} zwei Lösungen gibt, nämlich \displaystyle x+40^{\circ} = 65^{\circ} und die symmetrische Lösung \displaystyle x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,.

[Image]

Die allgemeine Lösung ist damit

\displaystyle x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}

Also erhalten wir die Lösungen

\displaystyle x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}