Lösung 4.1:3a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (15:35, 23. Jul. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.)
Zeile 1: Zeile 1:
-
Nachdem das Dreieck rechtwinklig ist, benutzen wir das Gesetz des Pythagoras um die Seite ''x'' zu bestimmen.
+
Nachdem das Dreieck rechtwinklig ist, benutzen wir den Satz des Pythagoras, um die Seite ''x'' zu bestimmen.
{{Abgesetzte Formel||<math>x^2 = 30^2 + 40^2\,\textrm{.}</math>}}
{{Abgesetzte Formel||<math>x^2 = 30^2 + 40^2\,\textrm{.}</math>}}

Aktuelle Version

Nachdem das Dreieck rechtwinklig ist, benutzen wir den Satz des Pythagoras, um die Seite x zu bestimmen.

\displaystyle x^2 = 30^2 + 40^2\,\textrm{.}

Diese Gleichung gibt uns

\displaystyle \begin{align}

x &= \sqrt{30^{2}+40^{2}} = \sqrt{900+1600} = \sqrt{2500}\\[5pt] &= \sqrt{25\cdot 100} = \sqrt{5^{2}\cdot 10^{2}} = 5\cdot 10 = 50\,\textrm{.} \end{align}