Lösung 2.3:1b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_3_1b.gif </center> {{NAVCONTENT_STOP}})
Aktuelle Version (12:25, 9. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 8 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Bei der quadratischen Ergänzung beachten wir nur den quadratischen und den linearen Term, also <math>x^{2}+2x</math>. Die Formel für die quadratische Ergänzung von <math>x^{2}+ax</math> lautet
-
<center> [[Bild:2_3_1b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Abgesetzte Formel||<math>\Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{.}</math>}}
 +
 
 +
Verwenden wir diese Formel, erhalten wir
 +
 
 +
{{Abgesetzte Formel||<math>x^{2}+2x = \Bigl(x+\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x+1)^{2}-1</math>}}
 +
 
 +
Subtrahieren wir "-1" von beiden Seiten der Gleichung, erhalten wir
 +
 
 +
{{Abgesetzte Formel||<math>x^{2}+2x-1 = (x+1)^{2}-1-1 = (x+1)^{2}-2\,\textrm{.}</math>}}
 +
 
 +
Um zu kontrollieren, ob die quadratische Ergänzung korrekt ist, erweitern wir die Quadrate auf der Rechten Seite, und erhalten
 +
 
 +
{{Abgesetzte Formel||<math>(x+1)^{2}-2 = x^{2}+2x+1-2 = x^{2}+2x-1</math>}}

Aktuelle Version

Bei der quadratischen Ergänzung beachten wir nur den quadratischen und den linearen Term, also \displaystyle x^{2}+2x. Die Formel für die quadratische Ergänzung von \displaystyle x^{2}+ax lautet

\displaystyle \Bigl(x+\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}\,\textrm{.}

Verwenden wir diese Formel, erhalten wir

\displaystyle x^{2}+2x = \Bigl(x+\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x+1)^{2}-1

Subtrahieren wir "-1" von beiden Seiten der Gleichung, erhalten wir

\displaystyle x^{2}+2x-1 = (x+1)^{2}-1-1 = (x+1)^{2}-2\,\textrm{.}

Um zu kontrollieren, ob die quadratische Ergänzung korrekt ist, erweitern wir die Quadrate auf der Rechten Seite, und erhalten

\displaystyle (x+1)^{2}-2 = x^{2}+2x+1-2 = x^{2}+2x-1