Lösung 1.1:7d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:06, 8. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.)
Zeile 3: Zeile 3:
::<math>0\textrm{.}\underline{10}\ \underline{100}\ \underline{1000}\ \underline{10000}\ \underline{100000}\,\ldots</math>
::<math>0\textrm{.}\underline{10}\ \underline{100}\ \underline{1000}\ \underline{10000}\ \underline{100000}\,\ldots</math>
{{NAVCONTENT_STEP}}
{{NAVCONTENT_STEP}}
-
handelt es sich nicht um eine rationale Zahl. Die Dezimalbruchentwicklung ist nämlich nicht periodisch, und deshalb ist eine Kanzellierung der Dezimalen wie in '''b''' und '''c''' nicht möglich.
+
handelt es sich nicht um eine rationale Zahl. Die Dezimalbruchentwicklung ist nämlich nicht periodisch, deshalb ist eine Kanzellierung der Dezimalen wie in '''b''' und '''c''' nicht möglich.
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}
<!--<center> [[Image:1_1_7d.gif]] </center>-->
<!--<center> [[Image:1_1_7d.gif]] </center>-->

Aktuelle Version