Lösung 3.1:6a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
(Der Versionsvergleich bezieht 2 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Wir erweitern den Bruch mit <math>\sqrt{5}+2</math> und vereinfachen | |
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{\sqrt{2}+3}{\sqrt{5}-2} | \frac{\sqrt{2}+3}{\sqrt{5}-2} | ||
&= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt] | &= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt] |
Aktuelle Version
Wir erweitern den Bruch mit \displaystyle \sqrt{5}+2 und vereinfachen
\displaystyle \begin{align}
\frac{\sqrt{2}+3}{\sqrt{5}-2} &= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt] &= \frac{(\sqrt{2}+3)(\sqrt{5}+2)}{(\sqrt{5})^{2}-2^{2}}\\[5pt] &= \frac{\sqrt{2}\cdot\sqrt{5}+\sqrt{2}\cdot 2+3\cdot \sqrt{5}+3\cdot 2}{5-4}\\[5pt] &= \sqrt{2\cdot 5} + 2\sqrt{2} + 3\sqrt{5} + 6\\[5pt] &= 6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}\,\textrm{.} \end{align} |