Lösung 4.3:8d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Wir verwenden das Additionstheorem und erhalten direkt | |
- | + | {{Abgesetzte Formel||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{\cos (u+v)}{\cos u\cos v} |
- | + | &= \frac{\cos u\cdot\cos v - \sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt] | |
- | & =1-\frac{\sin u\ | + | &= 1-\frac{\sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt] |
- | \end{align}</math> | + | &= 1-\tan u\cdot\tan v\,\textrm{.} |
+ | \end{align}</math>}} |
Aktuelle Version
Wir verwenden das Additionstheorem und erhalten direkt
\displaystyle \begin{align}
\frac{\cos (u+v)}{\cos u\cos v} &= \frac{\cos u\cdot\cos v - \sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt] &= 1-\frac{\sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt] &= 1-\tan u\cdot\tan v\,\textrm{.} \end{align} |