Lösung 3.1:2f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  |  (Sprache und Formulierung) | ||
| (Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.) | |||
| Zeile 1: | Zeile 1: | ||
| - | + | Die Kubikwurzel einer Zahl ist diese Zahl hoch 1/3, also <math>\sqrt[3]{a} = a^{1/3}\,\textrm{.}</math> Die Primfaktoren von 8 sind | |
| - | 1/3,  | + | |
| - | {{ | + | {{Abgesetzte Formel||<math>8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3}\,.</math>}} | 
| - | + | Wir sehen also direkt, dass | |
| - | {{ | + | {{Abgesetzte Formel||<math>\sqrt[3]{8} = \sqrt[3]{2^{3}} = \bigl(2^{3}\bigr)^{1/3} = 2^{3\cdot\frac{1}{3}} = 2^{1} = 2\,\textrm{.}</math>}} | 
| - | + | ||
| - | + | ||
| - | + | ||
Aktuelle Version
Die Kubikwurzel einer Zahl ist diese Zahl hoch 1/3, also \displaystyle \sqrt[3]{a} = a^{1/3}\,\textrm{.} Die Primfaktoren von 8 sind
| \displaystyle 8 = 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3}\,. | 
Wir sehen also direkt, dass
| \displaystyle \sqrt[3]{8} = \sqrt[3]{2^{3}} = \bigl(2^{3}\bigr)^{1/3} = 2^{3\cdot\frac{1}{3}} = 2^{1} = 2\,\textrm{.} | 
 
		  