Lösung 4.2:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
| (Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.) | |||
| Zeile 1: | Zeile 1: | ||
| - | In | + | In der Übung 4.2:3e haben wir die Koordinaten auf dem Einheitskreis berechnet, die zum Winkel <math>3\pi/4</math> gehören. Dadurch erhalten wir |
| - | <math> | + | |
| - | + | ||
| - | <math>\cos \frac{3\pi }{4}=-\frac{1}{\sqrt{2}} | + | {{Abgesetzte Formel||<math>\cos\frac{3\pi }{4} = -\frac{1}{\sqrt{2}}\qquad\text{und}\qquad\sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}\,\textrm{.}</math>}} |
| - | + | Da <math>\tan x = \frac{\sin x}{\cos x}</math>, erhalten wir | |
| - | + | ||
| - | + | {{Abgesetzte Formel||<math>\tan\frac{3\pi}{4} = \frac{\sin\dfrac{3\pi}{4}}{\cos \dfrac{3\pi}{4}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.}</math>}} | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\tan \frac{3\pi }{4}=\frac{\sin \ | + | |
Aktuelle Version
In der Übung 4.2:3e haben wir die Koordinaten auf dem Einheitskreis berechnet, die zum Winkel \displaystyle 3\pi/4 gehören. Dadurch erhalten wir
| \displaystyle \cos\frac{3\pi }{4} = -\frac{1}{\sqrt{2}}\qquad\text{und}\qquad\sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}\,\textrm{.} |
Da \displaystyle \tan x = \frac{\sin x}{\cos x}, erhalten wir
| \displaystyle \tan\frac{3\pi}{4} = \frac{\sin\dfrac{3\pi}{4}}{\cos \dfrac{3\pi}{4}} = \frac{\dfrac{1}{\sqrt{2}}}{-\dfrac{1}{\sqrt{2}}} = -1\,\textrm{.} |
