Lösung 3.1:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (10:13, 9. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The root sign in the denominator lies in a quadratic term and we therefore expand first the quadratic
+
Wir erweitern die Quadrate im Nenner
-
<math>\left( \sqrt{3}-2 \right)^{2}</math>
+
-
using the square rule
+
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
(\sqrt{3}-2)^2
 +
&= (\sqrt{3}\,)^{2} - 2\cdot\sqrt{3}\cdot 2 + 2^{2}\\[5pt]
 +
&= 3-4\sqrt{3}+4\\[5pt]
 +
&= 7-4\sqrt{3}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Daher haben wir
-
& \left( \sqrt{3}-2 \right)^{2}=\left( \sqrt{3} \right)^{2}-2\centerdot \sqrt{3}\centerdot 2+2^{2} \\
+
-
& =3-4\sqrt{3}+4=7-4\sqrt{3} \\
+
-
\end{align}</math>
+
-
Thus,
+
{{Abgesetzte Formel||<math>\frac{1}{(\sqrt{3}-2)^{2}-2} = \frac{1}{7-4\sqrt{3}-2} = \frac{1}{5-4\sqrt{3}}</math>}}
 +
Jetzt erweitern wir den Bruch mit <math>5+4\sqrt{3}</math> und werden somit die Wurzel im Nenner los
-
<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
-
& \left( \sqrt{3}-2 \right)^{2}=\left( \sqrt{3} \right)^{2}-2\centerdot \sqrt{3}\centerdot 2+2^{2} \\
+
\frac{1}{5-4\sqrt{3}}
-
& =3-4\sqrt{3}+4=7-4\sqrt{3} \\
+
&= \frac{1}{5-4\sqrt{3}}\cdot \frac{5+4\sqrt{3}}{5+4\sqrt{3}}\\[5pt]
-
& \frac{1}{\left( \sqrt{3}-2 \right)^{2}-2}=\frac{1}{7-4\sqrt{3}-2}=\frac{1}{5-4\sqrt{3}} \\
+
&= \frac{5+4\sqrt{3}}{5^{2}-(4\sqrt{3})^{2}}\\[5pt]
-
\end{align}</math>
+
&= \frac{5+4\sqrt{3}}{5^{2}-4^{2}(\sqrt{3})^{2}}\\[5pt]
-
 
+
&= \frac{5+4\sqrt{3}}{25-16\cdot 3}\\[5pt]
-
and in the expression we can get rid of the root sign from the denominator by multiplying the top and bottom of the equation by the conjugate
+
&= \frac{5+4\sqrt{3}}{-23}\\[5pt]
-
<math>5+4\sqrt{3}</math>,
+
&= -\frac{5+4\sqrt{3}}{23}\,\textrm{.}
-
 
+
\end{align}</math>}}
-
 
+
-
<math>\begin{align}
+
-
& \frac{1}{5-4\sqrt{3}}=\frac{1}{5-4\sqrt{3}}\centerdot \frac{5+4\sqrt{3}}{5+4\sqrt{3}}=\frac{5+4\sqrt{3}}{5^{2}-\left( 4\sqrt{3} \right)^{2}} \\
+
-
& =\frac{5+4\sqrt{3}}{5^{2}-4^{2}\left( \sqrt{3} \right)^{2}}=\frac{5+4\sqrt{3}}{25-16\centerdot 3} \\
+
-
& =\frac{5+4\sqrt{3}}{-23}=-\frac{5+4\sqrt{3}}{23} \\
+
-
\end{align}</math>
+

Aktuelle Version

Wir erweitern die Quadrate im Nenner

\displaystyle \begin{align}

(\sqrt{3}-2)^2 &= (\sqrt{3}\,)^{2} - 2\cdot\sqrt{3}\cdot 2 + 2^{2}\\[5pt] &= 3-4\sqrt{3}+4\\[5pt] &= 7-4\sqrt{3}\,\textrm{.} \end{align}

Daher haben wir

\displaystyle \frac{1}{(\sqrt{3}-2)^{2}-2} = \frac{1}{7-4\sqrt{3}-2} = \frac{1}{5-4\sqrt{3}}

Jetzt erweitern wir den Bruch mit \displaystyle 5+4\sqrt{3} und werden somit die Wurzel im Nenner los

\displaystyle \begin{align}

\frac{1}{5-4\sqrt{3}} &= \frac{1}{5-4\sqrt{3}}\cdot \frac{5+4\sqrt{3}}{5+4\sqrt{3}}\\[5pt] &= \frac{5+4\sqrt{3}}{5^{2}-(4\sqrt{3})^{2}}\\[5pt] &= \frac{5+4\sqrt{3}}{5^{2}-4^{2}(\sqrt{3})^{2}}\\[5pt] &= \frac{5+4\sqrt{3}}{25-16\cdot 3}\\[5pt] &= \frac{5+4\sqrt{3}}{-23}\\[5pt] &= -\frac{5+4\sqrt{3}}{23}\,\textrm{.} \end{align}