Lösung 2.1:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Aktuelle Version (08:07, 9. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 3 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
We obtain the answer by using the squaring rule, <math>(a+b)^2=a^2+2ab+b^2,</math> on the quadratic term and expanding the other bracketed terms
+
Wir verwenden die binomische Formel <math>(a+b)^2=a^2+2ab+b^2,</math> für die erste Klammer und erweitern den zweiten Term
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(3x+4)^2&-(3x-2)(3x-8)\\
(3x+4)^2&-(3x-2)(3x-8)\\
&=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\
&=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\

Aktuelle Version

Wir verwenden die binomische Formel \displaystyle (a+b)^2=a^2+2ab+b^2, für die erste Klammer und erweitern den zweiten Term

\displaystyle \begin{align}

(3x+4)^2&-(3x-2)(3x-8)\\ &=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\ &= (9x^2+24x+16)-(9x^2-24x-6x+16)\\ &=(9x^2+24x+16)-(9x^2-30x+16)\\ &=(9x^2+24x+16)-9x^2+30x-16\\ &=9x^2-9x^2+24x+30x+16-16\\ &=0+54x+0\\ &= 54x\,\textrm{.} \end{align}