Lösung 2.3:5b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:53, 9. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
Instead of randomly trying different values of
+
Anstatt einfach verschiedene ''x''-Werte auszuprobieren, verwenden wir quadratische Ergänzung:
-
<math>x</math>
+
-
, it is better investigate the second-degree expression by completing the square:
+
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
4x^{2} - 28x + 48
 +
&= 4(x^{2} - 7x + 12)\\[5pt]
 +
&= 4\bigl((x-\tfrac{7}{2})^{2} - (\tfrac{7}{2})^{2} + 12\bigr)\\[5pt]
 +
&= 4\bigl((x-\tfrac{7}{2})^{2} - \tfrac{49}{4} + \tfrac{48}{4}\bigr)\\[5pt]
 +
&= 4\bigl((x-\tfrac{7}{2})^{2} - \tfrac{1}{4}\bigr)\\[5pt]
 +
&= 4\bigl(x - \tfrac{7}{2}\bigr)^{2}-1\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
In dieser Gleichung sehen wir, dass der Ausdruck negativ ist für z.B. <math>x=7/2</math>.
-
& 4x^{2}-28x+48=4\left( x^{2}-7x+12 \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \right) \\
+
-
& =4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \right)=4\left( x-\frac{7}{2} \right)^{2}-1. \\
+
-
\end{align}</math>
+
-
 
+
In Wirklichkeit ist der Ausdruck negativ für alle ''x''-Werte zwischen 3 und 4.
-
In the expression in which the square has been completed, we see that if, e.g.
+
-
<math>x={7}/{2}\;</math>, then the whole expression is negative and equal to
+
-
<math>-\text{1}</math>.
+
-
 
+
-
NOTE: All values of
+
-
<math>x</math>
+
-
between
+
-
<math>\text{3}</math>
+
-
and
+
-
<math>\text{4}</math>
+
-
give a negative value for the expression.
+

Aktuelle Version

Anstatt einfach verschiedene x-Werte auszuprobieren, verwenden wir quadratische Ergänzung:

\displaystyle \begin{align}

4x^{2} - 28x + 48 &= 4(x^{2} - 7x + 12)\\[5pt] &= 4\bigl((x-\tfrac{7}{2})^{2} - (\tfrac{7}{2})^{2} + 12\bigr)\\[5pt] &= 4\bigl((x-\tfrac{7}{2})^{2} - \tfrac{49}{4} + \tfrac{48}{4}\bigr)\\[5pt] &= 4\bigl((x-\tfrac{7}{2})^{2} - \tfrac{1}{4}\bigr)\\[5pt] &= 4\bigl(x - \tfrac{7}{2}\bigr)^{2}-1\,\textrm{.} \end{align}

In dieser Gleichung sehen wir, dass der Ausdruck negativ ist für z.B. \displaystyle x=7/2.

In Wirklichkeit ist der Ausdruck negativ für alle x-Werte zwischen 3 und 4.