Lösung 2.3:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (17:30, 9. Sep. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 9 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The first step when we solve the second-degree equation is to complete the square on the left-hand side:
+
Als ersten Schritt machen wir eine quadratische Ergänzung auf der linken Seite der Gleichung
 +
{{Abgesetzte Formel||<math>y^{2}+2y-15 = (y+1)^{2}-1^{2}-15 = (y+1)^{2}-16\,\textrm{.}</math>}}
-
<math>y^{2}+2y-15=\left( y+1 \right)^{2}-1^{2}-15=\left( y+1 \right)^{2}-16.</math>
+
Wir können die Gleichung als
-
The equation can now be written as
+
{{Abgesetzte Formel||<math>(y+1)^{2} = 16</math>}}
 +
schreiben und bekommen die Wurzeln
-
<math>\left( y+1 \right)^{2}=16</math>
+
:*<math>y+1 = \sqrt{16} = 4\,\textrm{,}\ </math>, also <math>y=-1+4=3\,\textrm{,}</math>
 +
:*<math>y+1 = -\sqrt{16} = -4\,\textrm{,}\ </math>, also <math>y=-1-4=-5\,\textrm{.}</math>
-
and has, after taking the square root, the solutions
 
 +
Wir kontrollieren, dass <math>y=-5</math> und <math>y=3</math> die ursprüngliche Gleichung erfüllen
-
<math>y+1=\sqrt{16}=4</math>
+
:*''y''&nbsp;=&nbsp;-5: <math>\ \text{Linke Seite} = (-5)^{2} + 2\cdot (-5)-15 = 25-10-15 = 0 = \text{Rechte Seite}</math>
-
which gives
+
-
<math>y=-1+4=3</math>
+
 +
:*''y''&nbsp;=&nbsp;3: <math>\ \text{Linke Seite} = 3^{2} + 2\cdot 3 - 15 = 9+6-15 = 0 = \text{Rechte Seite}</math>
-
<math>y+1=-\sqrt{16}=-4</math>
+
Lösungsweg mit der [[2.3:2b_pq|p-q_Formel]].
-
which gives
+
-
<math>y=-1-4=-5</math>
+
-
 
+
-
 
+
-
A quick check shows that
+
-
<math>y=-\text{5 }</math>
+
-
and
+
-
<math>y=\text{3 }</math>
+
-
satisfy the equation:
+
-
 
+
-
 
+
-
<math>y=-\text{5 }</math>: LHS=
+
-
<math>\left( -5 \right)^{2}+2\centerdot \left( -5 \right)-15=25-10-15=0</math>
+
-
= RHS
+
-
 
+
-
<math>y=\text{3 }</math>: LHS=
+
-
<math>3^{2}+2\centerdot 3-15=9+6-15=0</math>
+
-
= RHS
+

Aktuelle Version

Als ersten Schritt machen wir eine quadratische Ergänzung auf der linken Seite der Gleichung

\displaystyle y^{2}+2y-15 = (y+1)^{2}-1^{2}-15 = (y+1)^{2}-16\,\textrm{.}

Wir können die Gleichung als

\displaystyle (y+1)^{2} = 16

schreiben und bekommen die Wurzeln

  • \displaystyle y+1 = \sqrt{16} = 4\,\textrm{,}\ , also \displaystyle y=-1+4=3\,\textrm{,}
  • \displaystyle y+1 = -\sqrt{16} = -4\,\textrm{,}\ , also \displaystyle y=-1-4=-5\,\textrm{.}


Wir kontrollieren, dass \displaystyle y=-5 und \displaystyle y=3 die ursprüngliche Gleichung erfüllen

  • y = -5: \displaystyle \ \text{Linke Seite} = (-5)^{2} + 2\cdot (-5)-15 = 25-10-15 = 0 = \text{Rechte Seite}
  • y = 3: \displaystyle \ \text{Linke Seite} = 3^{2} + 2\cdot 3 - 15 = 9+6-15 = 0 = \text{Rechte Seite}

Lösungsweg mit der p-q_Formel.