Lösung 2.1:3b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3b.gif </center> {{NAVCONTENT_STOP}}) |
|||
| (Der Versionsvergleich bezieht 9 dazwischen liegende Versionen mit ein.) | |||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | Wenn wir den Faktor 5 aus dem Ausdruck ausklammern, sehen wir, dass der Ausdruck mit der binomischen Formel faktorisiert werden kann |
| - | + | ||
| - | + | {{Abgesetzte Formel||<math>\begin{align} | |
| + | 5x^2-20&=5(x^2-4)\\ | ||
| + | &= 5(x^2-2^2)\\ | ||
| + | &= 5(x+2)(x-2)\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Aktuelle Version
Wenn wir den Faktor 5 aus dem Ausdruck ausklammern, sehen wir, dass der Ausdruck mit der binomischen Formel faktorisiert werden kann
| \displaystyle \begin{align}
5x^2-20&=5(x^2-4)\\ &= 5(x^2-2^2)\\ &= 5(x+2)(x-2)\,\textrm{.} \end{align} |
