Lösung 1.3:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Alle Potenzen haben dieselbe Basis (5), und wir verwenden daher die Rechenregeln für Potenzen, um den Ausdruck zu vereinfachen | |
- | + | ||
- | + | {{Abgesetzte Formel||<math>\begin{align} | |
- | + | \frac{5^{12}}{5^{-4}}\cdot \bigl( 5^{2} \bigr)^{-6} | |
- | + | &= \frac{5^{12}}{5^{-4}}\cdot 5^{2\cdot (-6)}\\[3pt] | |
- | + | &= \frac{5^{12}}{5^{-4}}\cdot 5^{-12}\\[3pt] | |
- | <math>\begin{align} | + | &= \frac{5^{12}\cdot 5^{-12}}{5^{-4}}\\[3pt] |
- | + | &= \frac{5^{12-12}}{5^{-4}}\\[3pt] | |
- | + | &= \frac{5^{0}}{5^{-4}}\\[3pt] | |
- | & =\frac{5^{12-12}}{5^{-4}}=\frac{5^{0}}{5^{-4}}=5^{0- | + | &= 5^{0-(-4)}\\[3pt] |
- | \end{align}</math> | + | &= 5^{4}\\[3pt] |
+ | &= 5\cdot 5\cdot 5\cdot 5\\[3pt] | ||
+ | &= 625\,\textrm{.} | ||
+ | \end{align}</math>}} |
Aktuelle Version
Alle Potenzen haben dieselbe Basis (5), und wir verwenden daher die Rechenregeln für Potenzen, um den Ausdruck zu vereinfachen
\displaystyle \begin{align}
\frac{5^{12}}{5^{-4}}\cdot \bigl( 5^{2} \bigr)^{-6} &= \frac{5^{12}}{5^{-4}}\cdot 5^{2\cdot (-6)}\\[3pt] &= \frac{5^{12}}{5^{-4}}\cdot 5^{-12}\\[3pt] &= \frac{5^{12}\cdot 5^{-12}}{5^{-4}}\\[3pt] &= \frac{5^{12-12}}{5^{-4}}\\[3pt] &= \frac{5^{0}}{5^{-4}}\\[3pt] &= 5^{0-(-4)}\\[3pt] &= 5^{4}\\[3pt] &= 5\cdot 5\cdot 5\cdot 5\\[3pt] &= 625\,\textrm{.} \end{align} |