Lösung 1.3:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (13:03, 8. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
The numbers
+
9 und 27 können beide als Potenzen mit der Basis 3 geschrieben werden,
-
<math>9</math>
+
-
and
+
-
<math>27</math>
+
-
can both be written as powers of
+
-
<math>3</math>,
+
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
9 &= 3\cdot 3 = 3^{2}\,,\\[5pt]
 +
27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3}\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Nachdem alle Potenzen dieselbe Basis haben, können wir die Rechenregel für Multiplikation von Potenzen verwenden
-
& 9=3\centerdot 3=3^{2} \\
+
-
& \\
+
-
& 27=3\centerdot 9=3\centerdot 3\centerdot 3=3^{3} \\
+
-
\end{align}</math>
+
-
 
+
{{Abgesetzte Formel||<math>\begin{align}
-
Thus, all factors in the expression can be written using a common base
+
3^{13}\cdot 9^{-3}\cdot 27^{-2} &= 3^{13}\cdot (3^{2})^{-3}\cdot (3^{3})^{-2}\\[3pt]
-
 
+
&= 3^{13}\cdot 3^{2\cdot (-3)}\cdot 3^{3\cdot (-2)}\\[3pt]
-
and the whole product can be simplified using the power rules
+
&= 3^{13}\cdot 3^{-6}\cdot 3^{-6}\\[3pt]
-
 
+
&= 3^{13-6-6}\\[3pt]
-
 
+
&= 3^{1}\\[3pt]
-
<math>\begin{align}
+
&= 3\,\textrm{.}
-
& 3^{13}\centerdot 9^{-3}27^{-2}=3^{13}\centerdot \left( 3^{2} \right)^{-3}\centerdot \left( 3^{3} \right)^{-2} \\
+
\end{align}</math>}}
-
& \\
+
-
& =3^{13}\centerdot 3^{2\centerdot \left( -3 \right)}\centerdot 3^{3\centerdot \left( -2 \right)}=3^{13}\centerdot 3^{-6}\centerdot 3^{-6} \\
+
-
& \\
+
-
& =3^{13-6-6}=3^{1}=3 \\
+
-
\end{align}</math>
+

Aktuelle Version

9 und 27 können beide als Potenzen mit der Basis 3 geschrieben werden,

\displaystyle \begin{align}

9 &= 3\cdot 3 = 3^{2}\,,\\[5pt] 27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3}\textrm{.} \end{align}

Nachdem alle Potenzen dieselbe Basis haben, können wir die Rechenregel für Multiplikation von Potenzen verwenden

\displaystyle \begin{align}

3^{13}\cdot 9^{-3}\cdot 27^{-2} &= 3^{13}\cdot (3^{2})^{-3}\cdot (3^{3})^{-2}\\[3pt] &= 3^{13}\cdot 3^{2\cdot (-3)}\cdot 3^{3\cdot (-2)}\\[3pt] &= 3^{13}\cdot 3^{-6}\cdot 3^{-6}\\[3pt] &= 3^{13-6-6}\\[3pt] &= 3^{1}\\[3pt] &= 3\,\textrm{.} \end{align}