4. Trigonometrie

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (11:01, 9. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 21 dazwischen liegende Versionen mit ein.)
Zeile 2: Zeile 2:
<!-- Don't remove this line -->
<!-- Don't remove this line -->
 +
===Was ist Geometrie? ===
 +
Geometrie ist eine alte Wissenschaft. Das Wort Geometrie stammt von den griechischen Wörtern "Geo" und "Metri" und heißt ungefähr "Landmessung".
 +
Der vielleicht bekannteste Mathematiker der Geometrie war Euklid. Er schrieb das berühmte Werk "Die Elemente", in dem er die gesamte Mathematik seiner Zeit zusammenfasste. Im 17. Jahrhundert begann man, an einigen der Euklidischen Axiome zu zweifeln. Daraus entstand die sogenannte nichteuklidische Geometrie.
-
<!-- A hack to get a popup-window -->
 
-
{|align="left"
 
-
| width="220" height="203" |<math>\text{@(a class="image" href="http://smaug.nti.se/temp/KTH/film5.html" target="_blank")@(img src="http://wiki.math.se/wikis/2008/forberedandematte1/img_auth.php/0/00/Lars_och_Elin.jpg" alt="Film om trigonometri")@(/img)@(/a)}</math>
 
-
|}
 
-
'''How old are geometry and trigonometry and when did one start to use these methods to solve problems? '''
+
Das Wort Trigonometrie stammt von den griechischen Wörtern Trigon (Dreieck) und Metrie (Maß) und ist die Lehre von den Dreiecken. Die Trigonometrie entstand schon vor mehr als 2000 Jahren. Einer der bekanntesten Mathematiker dieser Zeit war Hipparch. Er entwickelte Methoden, um die Seiten eines Dreiecks mit Hilfe der Sehne eines Kreises zu bestimmen - und dies mehr als 2000 Jahre bevor der Taschenrechner erfunden war!
-
''Watch the video in which the lecturer Lasse Svensson tells us how geometry and trigonometry developed and answers Elins questions.''
+
In diesem Abschnitt behandeln wir verschiedene geometrische Objekte wie Geraden und Kreise und erklären, wie man diese mathematisch beschreiben kann.
 +
'''Der Einheitskreis spielt eine wichtige Rolle in der Trigonometrie'''
 +
Ein Kreis, der den Radius 1 und den Mittelpunkt (0,0) hat, wird Einheitskreis genannt. Der Einheitskreis wird unter anderem zur Definition der Sinus- und Kosinusfunktionen benutzt.
 +
Jeder Winkel kann durch einen Punkt auf dem Einheitskreis repräsentiert werden. Der ''x''-Wert dieses Punktes ist der Kosinuswert des Winkels und der ''y''-Wert dieses Punktes ist der Sinuswert des Winkels.
-
 
+
Falls Sie es gewohnt sind, Sinus und Kosinus als das Verhältnis zwischen Kathete und Hypotenuse zu definieren, müssen Sie sich unbedingt an die Definition durch über Einheitskreis gewöhnen. Die Definition über Kathete und Hypotenuse hat nämlich viele Einschränkungen und ist nicht immer gültig.
-
 
+
-
===What is geometry? ===
+
-
Geometry is a very old science. Geometry comes from Greek and means ”science of space”. "Ge" stands for earth and "metry" for science of measuring. Long before the birth of Jesus brilliant mathematicians had developed geometry.
+
-
 
+
-
Perhaps the most famous of these is '''EUCLID''' (around 300 BCE). He wrote a famous work entitled '''ELEMENTS''' - in which he summed up the mathematical knowledge of his time. In the 17th century one began to call into question some of the so-called Euclid '''AXIOMS''' and a '''NON-EUCLIDEAN''' geometry was developed which became of great importance in different contexts.
+
-
 
+
-
Trigonometry comes from Greek ("trigonon" stands for "triangle" and "metron" stands for "measure") and is a method to calculate the angles and sides of right-angled triangles. Trigonometry developed a few hundred years before the birth of Christ. One of the most famous mathematicians was HIPPARCHUS, who worked with the circle and chords within a circle. For each chord, he was able to calculate the corresponding arc length and in this way, he was able to determine the sides and angles of triangles. All this took place 2200 years before the advent of the calculator!
+
-
 
+
-
 
+
-
In this chapter we will see some examples of how geometric objects such as lines, parabolas and circles are described by equations. Similarly various regions can be described by inequalities.
+
-
 
+
-
 
+
-
 
+
-
'''The unit circle is of particular importance'''
+
-
 
+
-
The circle with a radius of 1 around the origin is especially important. One can use this circle to introduce the various concepts regarding angles as well as the trigonometric functions cosine and sine.
+
-
 
+
-
An angle corresponds to a point on the unit circle, the measure of the angle is the distance along the circle to the point (1.0), the cosine of the angle is the "x"-component of the point, the sine of the angle is "y"-component of the point.
+
-
 
+
-
The functions cosine and sine thus are used to translate from angles to distances.
+
-
 
+
-
If one is accustomed to think of cosine and sine as relations between the sides of a right-angled triangle, it is extremely important to rethink these functions in terms of the unit circle. This way it will be easier to understand trigonometric relationships like periodicity and the Pythagorean identity, the relationships for doubling angles and the formulas for derivatives.
+
[[Image:cikel.jpg|right]]
[[Image:cikel.jpg|right]]
-
To be able to manage and manipulate trigonometric expressions is important in most applications of mathematics. Thus the final section provides a thorough exercise to practise these skills.
 
- 
-
Once geometry was one of the main elements in a mathematics course. In recent decades, classical geometry has decreased both in high school as well as in university's courses. But, for anyone who intends to be active in photography or graphics or with construction and design (such as CAD), a good knowledge of geometry is very valuable.
 
 +
Trigonometrie wird in vielen Bereichen praktisch angewandt: in der Grafik, Architektur und in den meisten Bereichen der Naturwissenschaft. Deshalb sind gute Kenntnisse in Trigonometrie wichtig sowohl für höhere Studien als auch im Alltag.
-
A knowledge of geometry is also very useful in everyday life, where one is often faced with questions of a geometrical nature.
 
-
'''It is important to note that the material in this section— as well as in other parts of the course — is designed that one does not use calculators.'''
+
'''Dieser Abschnitt setzt ebenso wie alle anderen voraus, dass Du keinen Taschenrechner verwendest.'''
<div class="inforuta" style="width:580px;">
<div class="inforuta" style="width:580px;">
-
'''To do well in Trigonometry'''
+
'''Zum Abschnitt Trigonometrie'''
-
# Start by reading the section's theory and study the examples.
 
-
# Work through the exercises and try to solve them without using a calculator. Make sure that you have the right answer by clicking on the answer button. If you do not have it, you can click on the solution button to see what went wrong
 
-
# Then go ahead and answer the questions in the basic test of the section.
 
-
# If you get stuck on a point, check to see if someone else has discussed the point in the forum belonging to the section. If not, take up the point yourself. Your teacher (or a student) will respond to your question within a few hours.
 
-
# When you have answered correctly all questions in both the basic and the final test of this section you will have a pass for this section and then you should move on to Part 5 and work with an individual assignment and group assignment. Links to these are to be found in the "Student Lounge."
 
-
&nbsp;&nbsp;&nbsp;PS. If you feel that you are very familiar with the contents of a section you can test yourself by going directly to the basic and final tests. You must answer all the questions correctly in a test, but you may do the test several times if you do not succeed at the first attempt. It is your final results which appear in the statistics.
+
# Lese zuerst den Theorieabschnitt und die Beispiele durch.
 +
# Löse danach die Übungen ohne Taschenrechner. Kontrolliere Deine Antworten, indem Du auf "Antwort" klickst. Falls Du Hilfe brauchst, kannst Du auf "Lösung" klicken, um diese mit Deiner Lösung zu vergleichen.
 +
# Wenn Du mit den Übungen fertig bist, kannst Du die diagnostische Prüfung für das aktuelle Kapitel machen.
 +
# Falls Du irgendwelche Schwierigkeiten hast, kannst Du im Forum nach ähnlichen Beiträgen suchen. Wenn Du keinen hilfreichen Beitrag findest, kannst Du selbst eine Frage ins Forum stellen, die ein Mentor (oder anderer Student) innerhalb von ein paar Stunden beantworten wird.
 +
# Wenn Du die diagnostische Prüfung bestanden hast, solltest Du die Schlussprüfung machen. Um die Schlussprüfung zu bestehen, musst Du drei Fragen nacheinander richtig beantworten.
 +
# Wenn Du die diagnostische Prüfung und die Schlussprüfung geschafft hast, hast Du das Kapitel bestanden, und kannst mit dem nächsten Kapitel beginnen.
-
</div>
+
&nbsp;&nbsp;&nbsp;P.S. Falls Du mit dem Inhalt eines Kapitels schon sehr vertraut bist, kannst Du direkt die Prüfungen machen. Du musst auch dann alle Fragen richtig beantworten, aber Du hast auch mehrere Versuche, um die Prüfungen zu bestehen.</div>

Aktuelle Version


Was ist Geometrie?

Geometrie ist eine alte Wissenschaft. Das Wort Geometrie stammt von den griechischen Wörtern "Geo" und "Metri" und heißt ungefähr "Landmessung".

Der vielleicht bekannteste Mathematiker der Geometrie war Euklid. Er schrieb das berühmte Werk "Die Elemente", in dem er die gesamte Mathematik seiner Zeit zusammenfasste. Im 17. Jahrhundert begann man, an einigen der Euklidischen Axiome zu zweifeln. Daraus entstand die sogenannte nichteuklidische Geometrie.


Das Wort Trigonometrie stammt von den griechischen Wörtern Trigon (Dreieck) und Metrie (Maß) und ist die Lehre von den Dreiecken. Die Trigonometrie entstand schon vor mehr als 2000 Jahren. Einer der bekanntesten Mathematiker dieser Zeit war Hipparch. Er entwickelte Methoden, um die Seiten eines Dreiecks mit Hilfe der Sehne eines Kreises zu bestimmen - und dies mehr als 2000 Jahre bevor der Taschenrechner erfunden war!


In diesem Abschnitt behandeln wir verschiedene geometrische Objekte wie Geraden und Kreise und erklären, wie man diese mathematisch beschreiben kann.


Der Einheitskreis spielt eine wichtige Rolle in der Trigonometrie

Ein Kreis, der den Radius 1 und den Mittelpunkt (0,0) hat, wird Einheitskreis genannt. Der Einheitskreis wird unter anderem zur Definition der Sinus- und Kosinusfunktionen benutzt.

Jeder Winkel kann durch einen Punkt auf dem Einheitskreis repräsentiert werden. Der x-Wert dieses Punktes ist der Kosinuswert des Winkels und der y-Wert dieses Punktes ist der Sinuswert des Winkels.

Falls Sie es gewohnt sind, Sinus und Kosinus als das Verhältnis zwischen Kathete und Hypotenuse zu definieren, müssen Sie sich unbedingt an die Definition durch über Einheitskreis gewöhnen. Die Definition über Kathete und Hypotenuse hat nämlich viele Einschränkungen und ist nicht immer gültig.


Trigonometrie wird in vielen Bereichen praktisch angewandt: in der Grafik, Architektur und in den meisten Bereichen der Naturwissenschaft. Deshalb sind gute Kenntnisse in Trigonometrie wichtig sowohl für höhere Studien als auch im Alltag.


Dieser Abschnitt setzt ebenso wie alle anderen voraus, dass Du keinen Taschenrechner verwendest.


Zum Abschnitt Trigonometrie


  1. Lese zuerst den Theorieabschnitt und die Beispiele durch.
  2. Löse danach die Übungen ohne Taschenrechner. Kontrolliere Deine Antworten, indem Du auf "Antwort" klickst. Falls Du Hilfe brauchst, kannst Du auf "Lösung" klicken, um diese mit Deiner Lösung zu vergleichen.
  3. Wenn Du mit den Übungen fertig bist, kannst Du die diagnostische Prüfung für das aktuelle Kapitel machen.
  4. Falls Du irgendwelche Schwierigkeiten hast, kannst Du im Forum nach ähnlichen Beiträgen suchen. Wenn Du keinen hilfreichen Beitrag findest, kannst Du selbst eine Frage ins Forum stellen, die ein Mentor (oder anderer Student) innerhalb von ein paar Stunden beantworten wird.
  5. Wenn Du die diagnostische Prüfung bestanden hast, solltest Du die Schlussprüfung machen. Um die Schlussprüfung zu bestehen, musst Du drei Fragen nacheinander richtig beantworten.
  6. Wenn Du die diagnostische Prüfung und die Schlussprüfung geschafft hast, hast Du das Kapitel bestanden, und kannst mit dem nächsten Kapitel beginnen.
   P.S. Falls Du mit dem Inhalt eines Kapitels schon sehr vertraut bist, kannst Du direkt die Prüfungen machen. Du musst auch dann alle Fragen richtig beantworten, aber Du hast auch mehrere Versuche, um die Prüfungen zu bestehen.