Lösung 2.2:8b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.2:8b moved to Solution 2.2:8b: Robot: moved page)
Aktuelle Version (13:41, 18. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Die Punkte, die die Ungleichung <math>y < 3x-4</math> erfüllen, haben eine ''y''-Koordinate, die bei gleicher ''x''-Koordinate kleiner ist als die der Geraden <math>y=3x-4</math>. Also besteht das Gebiet aus allen Punkten unterhalb der Gerade <math>y=3x-4</math>.
-
<center> [[Image:2_2_8b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
-
[[Image:2_2_8_b.gif|center]]
+
<center>{{:2.2.8b - Solution - The region y less than 3x - 4}}</center>
 +
 
 +
Man kann die Gerade <math>y=3x-4</math> zeichnen, indem man zwei ''x''-Werte wählt, zum Beispiel <math>x=0</math> und <math>x=1</math>, und danach die ''y''-Werte berechnet durch die Gleichung der Gerade. Die ''y''-Werte sind also <math>y=3\cdot 0-4=-4</math> und <math>y=3\cdot 1-4=-1</math>. Wir ziehen jetzt einfach eine Gerade durch die beiden Punkte.

Aktuelle Version

Die Punkte, die die Ungleichung \displaystyle y < 3x-4 erfüllen, haben eine y-Koordinate, die bei gleicher x-Koordinate kleiner ist als die der Geraden \displaystyle y=3x-4. Also besteht das Gebiet aus allen Punkten unterhalb der Gerade \displaystyle y=3x-4.


[Image]

Man kann die Gerade \displaystyle y=3x-4 zeichnen, indem man zwei x-Werte wählt, zum Beispiel \displaystyle x=0 und \displaystyle x=1, und danach die y-Werte berechnet durch die Gleichung der Gerade. Die y-Werte sind also \displaystyle y=3\cdot 0-4=-4 und \displaystyle y=3\cdot 1-4=-1. Wir ziehen jetzt einfach eine Gerade durch die beiden Punkte.