Lösung 3.1:6a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
|||
(Der Versionsvergleich bezieht 5 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | { | + | Wir erweitern den Bruch mit <math>\sqrt{5}+2</math> und vereinfachen |
- | < | + | |
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
+ | \frac{\sqrt{2}+3}{\sqrt{5}-2} | ||
+ | &= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt] | ||
+ | &= \frac{(\sqrt{2}+3)(\sqrt{5}+2)}{(\sqrt{5})^{2}-2^{2}}\\[5pt] | ||
+ | &= \frac{\sqrt{2}\cdot\sqrt{5}+\sqrt{2}\cdot 2+3\cdot \sqrt{5}+3\cdot 2}{5-4}\\[5pt] | ||
+ | &= \sqrt{2\cdot 5} + 2\sqrt{2} + 3\sqrt{5} + 6\\[5pt] | ||
+ | &= 6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Aktuelle Version
Wir erweitern den Bruch mit \displaystyle \sqrt{5}+2 und vereinfachen
\displaystyle \begin{align}
\frac{\sqrt{2}+3}{\sqrt{5}-2} &= \frac{\sqrt{2}+3}{\sqrt{5}-2}\cdot\frac{\sqrt{5}+2}{\sqrt{5}+2}\\[5pt] &= \frac{(\sqrt{2}+3)(\sqrt{5}+2)}{(\sqrt{5})^{2}-2^{2}}\\[5pt] &= \frac{\sqrt{2}\cdot\sqrt{5}+\sqrt{2}\cdot 2+3\cdot \sqrt{5}+3\cdot 2}{5-4}\\[5pt] &= \sqrt{2\cdot 5} + 2\sqrt{2} + 3\sqrt{5} + 6\\[5pt] &= 6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}\,\textrm{.} \end{align} |