Lösung 2.1:6a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-[[Bild: +[[Image:))
Aktuelle Version (22:27, 8. Aug. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Zuerst vereinfachen wir die beiden Brüche und danach schreiben wir die Brüche mit gemeinsamen Nenner
-
<center> [[Image:2_1_6a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Abgesetzte Formel||<math>\begin{align}
 +
x-y+\frac{x^{2}}{y-x} &= \frac{\left( x-y \right)\left( y-x \right)}{y-x}+\frac{x^{2}}{y-x} = \{\ y-x=-(x-y)\ \}\\[5pt]
 +
&= \frac{-(x-y)^{2}}{y-x}+\frac{x^{2}}{y-x} = \frac{-(x-y)^{2}+x^{2}}{y-x}\\[5pt]
 +
&= \frac{-(x^{2}-2xy+y^{2})+x^{2}}{y-x} = \frac{-x^{2}+2xy-y^{2}+x^{2}}{y-x}\\[5pt]
 +
&= \frac{2xy-y^{2}}{y-x} = \frac{y(2x-y)}{y-x},\\[15pt]
 +
\frac{y}{2x-y}-1
 +
&= \frac{y}{2x-y}-\frac{2x-y}{2x-y} = \frac{y-(2x-y)}{2x-y} = \frac{y-2x+y}{2x-y}\\[5pt]
 +
& =\frac{2y-2x}{2x-y} = \frac{2(y-x)}{2x-y}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Jetzt multiplizieren wir die beiden Faktoren und kürzen den Bruch so weit wie möglich
 +
 
 +
{{Abgesetzte Formel||<math>\biggl(x-y+\frac{x^{2}}{y-x}\biggr) \biggl(\frac{y}{2x-y}-1\biggr) = \frac{y(2x-y)}{y-x}\cdot\frac{2(y-x)}{2x-y}=2y\,\textrm{.}</math>}}

Aktuelle Version

Zuerst vereinfachen wir die beiden Brüche und danach schreiben wir die Brüche mit gemeinsamen Nenner

\displaystyle \begin{align}

x-y+\frac{x^{2}}{y-x} &= \frac{\left( x-y \right)\left( y-x \right)}{y-x}+\frac{x^{2}}{y-x} = \{\ y-x=-(x-y)\ \}\\[5pt] &= \frac{-(x-y)^{2}}{y-x}+\frac{x^{2}}{y-x} = \frac{-(x-y)^{2}+x^{2}}{y-x}\\[5pt] &= \frac{-(x^{2}-2xy+y^{2})+x^{2}}{y-x} = \frac{-x^{2}+2xy-y^{2}+x^{2}}{y-x}\\[5pt] &= \frac{2xy-y^{2}}{y-x} = \frac{y(2x-y)}{y-x},\\[15pt] \frac{y}{2x-y}-1 &= \frac{y}{2x-y}-\frac{2x-y}{2x-y} = \frac{y-(2x-y)}{2x-y} = \frac{y-2x+y}{2x-y}\\[5pt] & =\frac{2y-2x}{2x-y} = \frac{2(y-x)}{2x-y}\,\textrm{.} \end{align}

Jetzt multiplizieren wir die beiden Faktoren und kürzen den Bruch so weit wie möglich

\displaystyle \biggl(x-y+\frac{x^{2}}{y-x}\biggr) \biggl(\frac{y}{2x-y}-1\biggr) = \frac{y(2x-y)}{y-x}\cdot\frac{2(y-x)}{2x-y}=2y\,\textrm{.}