Lösung 2.1:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (08:07, 9. Jun. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Wir verwenden die binomische Formel <math>(a+b)^2=a^2+2ab+b^2,</math> für die erste Klammer und erweitern den zweiten Term
-
<!--center> [[Bild:2_1_2c.gif]] </center-->
+
-
We obtain the answer by using the squaring rule, <math>(a+b)^2=a^2+2ab+b^2,</math> on the quadratic term and expanding the other bracketed terms:
+
-
<math>
+
{{Abgesetzte Formel||<math>\begin{align}
-
\qquad
+
(3x+4)^2&-(3x-2)(3x-8)\\
-
(3x+4)^2-(3x-2)(3x-8)
+
-
</math>
+
-
 
+
-
<math>
+
-
\qquad \qquad
+
-
\begin{align}
+
&=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\
&=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\
&= (9x^2+24x+16)-(9x^2-24x-6x+16)\\
&= (9x^2+24x+16)-(9x^2-24x-6x+16)\\
Zeile 17: Zeile 9:
&=9x^2-9x^2+24x+30x+16-16\\
&=9x^2-9x^2+24x+30x+16-16\\
&=0+54x+0\\
&=0+54x+0\\
-
&= 54x
+
&= 54x\,\textrm{.}
-
\end{align}
+
\end{align}</math>}}
-
</math>
+
-
 
+
-
 
+
-
{{NAVCONTENT_STOP}}
+

Aktuelle Version

Wir verwenden die binomische Formel \displaystyle (a+b)^2=a^2+2ab+b^2, für die erste Klammer und erweitern den zweiten Term

\displaystyle \begin{align}

(3x+4)^2&-(3x-2)(3x-8)\\ &=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\ &= (9x^2+24x+16)-(9x^2-24x-6x+16)\\ &=(9x^2+24x+16)-(9x^2-30x+16)\\ &=(9x^2+24x+16)-9x^2+30x-16\\ &=9x^2-9x^2+24x+30x+16-16\\ &=0+54x+0\\ &= 54x\,\textrm{.} \end{align}