1.2 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (07:36, 2. Sep. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 29 dazwischen liegende Versionen mit ein.)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[1.2 Bråkräkning|Teori]]}}
+
{{Nicht gewählter Tab|[[1.2 Brüche|Theorie]]}}
-
{{Mall:Vald flik|[[1.2 Övningar|Övningar]]}}
+
{{Gewählter Tab|[[1.2 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 1.2:1===
+
===Übung 1.2:1===
<div class="ovning">
<div class="ovning">
-
Skriv på gemensamt bråkstreck
+
Schreibe folgende Ausdrücke als einen einzigen Bruch und überprüfe Deine Lösungen anschließend, indem Du auf "Antwort" klickst.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 24: Zeile 24:
||<math> \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math>
||<math> \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:1|Lösning a|Lösning 1.2:1a|Lösning b|Lösning 1.2:1b|Lösning c|Lösning 1.2:1c|Lösning d|Lösning 1.2:1d|Lösning e|Lösning 1.2:1e}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:1|Lösung a|Lösung 1.2:1a|Lösung b|Lösung 1.2:1b|Lösung c|Lösung 1.2:1c|Lösung d|Lösung 1.2:1d|Lösung e|Lösung 1.2:1e}}
-
===Övning 1.2:2===
+
===Übung 1.2:2===
<div class="ovning">
<div class="ovning">
-
Bestäm minsta gemensamma nämnare
+
Bestimme den kleinsten gemeinsamen Nenner von:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 41: Zeile 41:
|| <math>\displaystyle \frac{2}{45}+\frac{1}{75}</math>
|| <math>\displaystyle \frac{2}{45}+\frac{1}{75}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:2|Lösning a|Lösning 1.2:2a|Lösning b|Lösning 1.2:2b|Lösning c|Lösning 1.2:2c|Lösning d|Lösning 1.2:2d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:2|Lösung a|Lösung 1.2:2a|Lösung b|Lösung 1.2:2b|Lösung c|Lösung 1.2:2c|Lösung d|Lösung 1.2:2d}}
-
===Övning 1.2:3===
+
===Übung 1.2:3===
<div class="ovning">
<div class="ovning">
-
Beräkna följande uttryck genom att använda minsta gemensamma nämnare:
+
Berechne folgende Ausdrücke mit Hilfe des kleinsten gemeinsamen Nenners.
 +
 
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 53: Zeile 54:
|width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math>
|width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:3|Lösning a|Lösning 1.2:3a|Lösning b|Lösning 1.2:3b}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:3|Lösung a|Lösung 1.2:3a|Lösung b|Lösung 1.2:3b}}
-
===Övning 1.2:4===
+
===Übung 1.2:4===
<div class="ovning">
<div class="ovning">
-
F&ouml;renkla f&ouml;ljande uttryck genom att skriva p&aring; gemensamt br&aring;kstreck. Br&aring;ket ska vara f&auml;rdigf&ouml;rkortat.
+
Schreibe folgende Ausdrücke als einen einzigen Bruch, so weit wie möglich gekürzt.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 67: Zeile 68:
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math>
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:4|Lösning a|Lösning 1.2:4a|Lösning b|Lösning 1.2:4b|Lösning c|Lösning 1.2:4c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:4|Lösung a|Lösung 1.2:4a|Lösung b|Lösung 1.2:4b|Lösung c|Lösung 1.2:4c}}
-
===Övning 1.2:5===
+
===Übung 1.2:5===
<div class="ovning">
<div class="ovning">
-
F&ouml;renkla f&ouml;ljande uttryck genom att skriva p&aring; gemensamt br&aring;kstreck. Br&aring;ket ska vara f&auml;rdigf&ouml;rkortat.
+
Schreibe folgende Ausdrücke als einen einzigen Bruch, so weit wie möglich gekürzt.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 81: Zeile 82:
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math>
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:5|Lösning a|Lösning 1.2:5a|Lösning b|Lösning 1.2:5b|Lösning c|Lösning 1.2:5c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:5|Lösung a|Lösung 1.2:5a|Lösung b|Lösung 1.2:5b|Lösung c|Lösung 1.2:5c}}
-
===Övning 1.2:6===
+
===Übung 1.2:6===
<div class="ovning">
<div class="ovning">
-
F&ouml;renkla <math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math>
+
Vereinfache:
-
</div>{{#NAVCONTENT:Svar|Svar 1.2:6|Lösning |Lösning 1.2:6}}
+
<math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math>
 +
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:6|Lösung |Lösung 1.2:6}}
 +
 
 +
 
 +
'''Diagnostische Prüfung und Schlussprüfung'''
 +
 
 +
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in der Student Lounge.

Aktuelle Version

       Theorie          Übungen      


Übung 1.2:1

Schreibe folgende Ausdrücke als einen einzigen Bruch und überprüfe Deine Lösungen anschließend, indem Du auf "Antwort" klickst.

a) \displaystyle \displaystyle \frac{7}{4}+\frac{11}{7} b) \displaystyle \displaystyle \frac{2}{7}-\frac{1}{5} c) \displaystyle \displaystyle \frac{1}{6}-\frac{2}{5}
d) \displaystyle \displaystyle \frac{1}{3}+\frac{1}{4}+\frac{1}{5} e) \displaystyle \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}


Übung 1.2:2

Bestimme den kleinsten gemeinsamen Nenner von:

a) \displaystyle \displaystyle \frac{1}{6}+\frac{1}{10} b) \displaystyle \displaystyle \frac{1}{4}-\frac{1}{8}
c) \displaystyle \displaystyle \frac{1}{12}-\frac{1}{14} d) \displaystyle \displaystyle \frac{2}{45}+\frac{1}{75}


Übung 1.2:3

Berechne folgende Ausdrücke mit Hilfe des kleinsten gemeinsamen Nenners.

a) \displaystyle \displaystyle\frac{3}{20}+\frac{7}{50}-\frac{1}{10} b) \displaystyle \displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}


Übung 1.2:4

Schreibe folgende Ausdrücke als einen einzigen Bruch, so weit wie möglich gekürzt.

a) \displaystyle \displaystyle\frac{\displaystyle\frac{3}{5}}{\displaystyle\frac{7}{10}} b) \displaystyle \displaystyle\frac{\displaystyle\frac{2}{7}}{\displaystyle\frac{3}{8}} c) \displaystyle \displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}


Übung 1.2:5

Schreibe folgende Ausdrücke als einen einzigen Bruch, so weit wie möglich gekürzt.

a) \displaystyle \displaystyle \frac{2}{\displaystyle \frac{1}{7}\displaystyle -\frac{1}{15}} b) \displaystyle \displaystyle\frac{\displaystyle\frac{1}{2}\displaystyle+\frac{1}{3}}{\displaystyle\frac{1}{3}\displaystyle-\frac{1}{2}} c) \displaystyle \displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}


Übung 1.2:6

Vereinfache: \displaystyle \ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in der Student Lounge.